Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)
Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)
\(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)
\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)
\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrowđpcm\)
ĐKXĐ:...
\(\left\{{}\begin{matrix}\frac{1}{x-y+2}=a\\\frac{1}{x+y-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7a-5b=\frac{9}{2}\\6a+4b=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y+2=1\\x+y-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\Rightarrow\frac{y}{x}=3\)