K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:

\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)

Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ

\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ

Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)

Vậy a = 1; b = -8

27 tháng 8 2015

Câu 1. Đặt \(x=\sqrt[3]{a},y=\sqrt[3]{b}\to x^3+y^3=2\to2=\left(x+y\right)\left(x^2-xy+y^2\right).\)

\(x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) nên suy ra \(x+y>0.\)

Mặt khác ta có \(x^2-xy+y^2=\frac{1}{4}\left(4x^2-4xy+4y^2\right)=\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)\)

\(=\frac{\left(x+y\right)^2}{4}+\frac{3\left(x-y\right)^2}{4}\ge\frac{\left(x+y\right)^2}{4}\)

Vậy \(2\ge\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^3}{4}\to8\ge\left(x+y\right)^3\to2\ge x+y.\)

14 tháng 1 2018

casio hả. 
thay \(x=1+\sqrt{2}\) vào=> quan hệ a và b
dùng viet
 

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)