K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 10 2019

Giả sử góc đã cho là nhọn

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{25}{169}}=\frac{12}{13}\)

\(tana=\frac{sina}{cosa}=\frac{5}{12}\)

\(cota=\frac{1}{tana}=\frac{12}{5}\)

21 tháng 10 2019

quá chuẩn anh ơi

Bài 2: 

\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)

\(\cot a=\dfrac{24}{7}\)

30 tháng 7 2018

ta có : \(tan\alpha+cot\alpha=3\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}=3\)

\(\Leftrightarrow\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}=3\Leftrightarrow\dfrac{1}{sin\alpha.cos\alpha}=3\)

\(\Leftrightarrow sin\alpha.cos\alpha=\dfrac{1}{3}\) vậy \(sin\alpha.cos\alpha=\dfrac{1}{3}\)

24 tháng 6 2019

a/ \(\sin\alpha=\frac{C_đ}{C_h}\)

\(\cos\alpha=\frac{C_k}{C_h}\)

\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)

b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)

c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)

d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)

\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)

\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)

P/s: hok trc lp 9 hay sao mà lm bài bài này?

25 tháng 6 2019

uk. mk học trc lp 9

Câu 1: 

\(\cos a=\sqrt{1-0.28^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{0.28}{0.96}=\dfrac{7}{24}\)

\(\cot a=\dfrac{1}{\tan a}=\dfrac{24}{7}\)

14 tháng 9 2015

tớ mới tham gia nên k biết viết anpha,tớ sẽ viết là @ nhé.hình vẽ là tam giác ABC có Bc và cạnh huyền,AB là cạnh  kề còn AC là cạnh đối(tớ cho góc B làm góc anpha)

a,tan@=AC/AB

sin@=AC/BC (1),cos@=AB/BC (2)

từ (1) và (2) suy ra sin@/cos@=AC/BC : AB/BC = AC/BC x BC/AB= AC/AB

mà tan@ = AC/AB

=>tan@=sin@/cos@

những câu sau làm tương tự nhé

\(\left(\sin a+\cos a\right)^2=\sin^2a+\cos^2a+2\cdot\sin a\cdot\cos a\)

\(=1+2\cdot\sin a\cdot\cos a\)

\(=\tan^2a\cdot\cot^2a+2\cdot\sin a\cdot\cos a\)