K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(pH =  - \log x = {\log _{{{10}^{ - 1}}}}x = {\log _{\frac{1}{{10}}}}x\)

Do \(0 < \frac{1}{{10}} < 1\) nên hàm số \(pH = {\log _{\frac{1}{{10}}}}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).

Ta có:

\(\begin{array}{l}pH = 7,3 \Leftrightarrow 7,3 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,3}} \approx 5,{01.10^{ - 8}}\\pH = 7,45 \Leftrightarrow 7,45 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,45}} \approx 3,{55.10^{ - 8}}\end{array}\)

Vì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\) nên nồng độ H+ trong máu nhận giá trị trong miền từ \(3,{55.10^{ - 8}}\) đến \(5,{01.10^{ - 8}}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Số cá thể vi khuẩn ban đầu mẻ có là:

\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)

b) Với \(t = 1,P\left( t \right) = 100\) ta có:

\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)

c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:

\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)

20 tháng 8 2023

tham khảo

a) Khối lượng vi khuẩn tại thời điểm bắt đầu nuôi cấy là:

\(M\left(0\right)=50.1,06^0=50\left(g\right)\)

b) Khối lượng vi khuẩn sau \(2\) giờ là:

\(M\left(2\right)=50.1,06^2=56,18\left(g\right)\)

Khối lượng vi khuẩn sau \(10\) giờ là:

\(M\left(10\right)=50.1,06^{10}\approx89,54\left(g\right)\)

c) Xét hàm số \(M\left(t\right)=50.1,06^t\).

Vì \(1,06>1\) nên hàm số \(M\left(t\right)=50.1,06^t\)  là hàm số đồng biến. Vậy khối lượng vi khuẩn tăng dần theo thời gian.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({\log _{\frac{1}{3}}}\left( {x + 1} \right) < 2\)

Điều kiện: \(x + 1 > 0 \Leftrightarrow x >  - 1\)

Vậy nghiệm của bất phương trình là \(x >  - \frac{8}{9}\).

b) \({\log _5}\left( {x + 2} \right) \le 1\)

Điều kiện: \(x + 2 > 0 \Leftrightarrow x >  - 2\)

\(BPT \Leftrightarrow x + 2 \le {5^1} \Leftrightarrow x + 2 \le 5 \Leftrightarrow x \le 3\)

Kết hợp với điều kiện ta được nghiệm của bất phương trình là \( - 2 < x \le 3\).

22 tháng 9 2023

Tham khảo:

Tuổi trung bình của người Việt Nam năm 2020:

                \(\bar x = \frac{{7.89 \times 2.5 + 14.68 \times 9.5 + 13.32 \times 19.5 + 53.78 \times 44.5 + 7.66 \times 80}}{{7.89 + 14.68 + 13.32 + 53.78 + 7.66}} = 35.19\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,pH_A=1,9\Leftrightarrow-log\left[H^+\right]=1,9\Leftrightarrow H^+=10^{-1,9}\)

Vậy độ acid của dung dịch A là \(10^{-1,9}mol/L\)

\(pH_B=2,5\Leftrightarrow-log\left[H^+\right]=2,5\Leftrightarrow H^+=10^{-2,5}\)

Vậy độ acid của dung dịch B là \(10^{-2,5}mol/L\)

Ta có: \(\dfrac{H^+_A}{H_B^+}=\dfrac{10^{-1,9}}{10^{-2,5}}\approx398\)

Vậy độ acid của dung dịch A cao hơn độ acid của dung dịch B 3,98 lần.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

b, Ta có: 

\(6,5< pH< 6,7\\ \Leftrightarrow6,5< -log\left[H^+\right]< 6,7\\ \Leftrightarrow-6,7< log\left[H^+\right]< -6,5\\ \Leftrightarrow10^{-6,7}< H^+< 10^{-6,5}\)

Vậy nước chảy từ vòi nước có độ acid từ \(10^{-6,7}mol/L\) đến \(10^{-6,5}mol/L\)

Như vậy, nước đó có độ acid cao hơn nước cất.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 50,\;q = 0,5\)

Tổng lượng thuốc trong máu sau khi dùng 10 ngày liên tiếp là:

\({S_n} = \frac{{50\left[ {1 - {{\left( {0,5} \right)}^{10}}} \right]}}{{1 - 0,5}} = 99,902\) (mg).

20 tháng 8 2023

tham  khảo

Ta có:

\(pH=-logx\Leftrightarrow6,5=-logx\Leftrightarrow logx=-6,5\Leftrightarrow x=10^{-6,5}\approx3,16.10^{-77}\)

Vậy nồng độ \(H^+\) của sữa bằng \(3,16.10^{-7}\) mol/L.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(pH =  - \log \left[ {{H^ + }} \right] =  - \log {8.10^{ - 8}} \approx 7,1\)

=> Độ pH không phù hợp cho tôm sú phát triển.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Lượng nước biển bơm vào hồ sau \(t\) phút là: \(15t\) (lít).

Khối lượng muối có trong hồ sau \(t\) phút là: \(30.15t\) (gam).

Sau \(t\) phút kể từ khi bắt đầu bơm, lượng nước trong hồ là: \(6000 + 15t\) (lít).

Nồng độ muối tại thời điểm \(t\) phút kể từ khi bắt đầu bơm là: \(C\left( t \right) = \frac{{30.15t}}{{6000 + 15t}} = \frac{{30.15t}}{{15\left( {400 + t} \right)}} = \frac{{30t}}{{400 + t}}\)(gam/lít).

b) \(\mathop {\lim }\limits_{t \to  + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30t}}{{400 + t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30t}}{{t\left( {\frac{{400}}{t} + 1} \right)}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30}}{{\frac{{400}}{t} + 1}} = \frac{{30}}{{0 + 1}} = 30\) (gam/lít).

Vậy nồng độ muối trong hồ càng dần về 30 gam/lít, tức là nước trong hồ gần như là nước biển, khi \(t \to  + \infty \).