Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khối lượng muối có trong hồ là: \(200.10 = 2000\left( {kg} \right)\).
Sau \(t\) phút kể từ khi bắt đầu bơm, lượng nước trong hồ là: \(200 + 2t\left( {{m^3}} \right)\).
Nồng độ muối tại thời điểm \(t\) phút kể từ khi bắt đầu bơm là: \(C\left( t \right) = \frac{{2000}}{{200 + 2t}}\left( {kg/{m^3}} \right)\)
b) \(\mathop {\lim }\limits_{t \to + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{2000}}{{200 + 2t}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{2000}}{{t\left( {\frac{{200}}{t} + 2} \right)}} = \mathop {\lim }\limits_{t \to + \infty } \frac{1}{t}.\mathop {\lim }\limits_{t \to + \infty } \frac{{2000}}{{\frac{{200}}{t} + 2}}\)
\( = \mathop {\lim }\limits_{t \to + \infty } \frac{1}{t}.\frac{{\mathop {\lim }\limits_{t \to + \infty } 2000}}{{\mathop {\lim }\limits_{t \to + \infty } \frac{{200}}{t} + \mathop {\lim }\limits_{t \to + \infty } 2}} = 0.\frac{{2000}}{{0 + 2}} = 0\)
Ý nghĩa: Khi \(t\) càng lớn thì nồng độ muối càng dần về 0, tức là đến một lúc nào đó nồng độ muối trong hồ không đáng kể, nước trong hồ gần như là nước ngọt.
pH=-log[H+]
Nồng độ ion hydro khi pH=8 là \(\left[H^+\right]=10^8\)(mol/lít)
a)Độ pH của nước cất là:
\(pH=-log\left[H^+\right]=-log\left[10^{-7}\right]=7\)
b)Độ pH của dung dịch đó là:
\(pH=-log\left[H^+\right]=-log\left[20.10^{-7}\right]\approx5,7\)
a) Chu kỳ của sóng \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{\frac{\pi }{{10}}}} = 20\;\left( s \right)\)
b) Vì \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1\;\;\;\;\; \Rightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90\)
Vậy chiều cao của sóng theo phương thẳng đứng là: \(90 + 90 = 180\;\left( {cm} \right)\)
Mọi muối clorua điện phân nước đều đc
\(NaCl\rightarrow^{đpn}Na+Cl_2\)
bn tự xử câu sau nha
Với \(pH=-log\left[H^+\right]\),ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=\dfrac{d}{d\left[H^+\right]}\left(-log\left[H^+\right]\right)\)
Sử dụng quy tắc tính đạo hàm của hàm hợp, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{d}{d\left[H^+\right]}\left(log\left[H^+\right]\right)\)
Áp dụng công thức đạo hàm của hàm số logarit tổng quát, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{1}{\left[H^+\right]ln10}\)
Vậy tốc độ thay đổi của \(pH\) đối với nồng độ \(\left[H^+\right]\) là:
\(\dfrac{dpH}{d\left[H^+\right]}=-\dfrac{1}{\left[H^+\right]ln10}\)
a) \({\log _{\frac{1}{3}}}\left( {x + 1} \right) < 2\)
Điều kiện: \(x + 1 > 0 \Leftrightarrow x > - 1\)
Vậy nghiệm của bất phương trình là \(x > - \frac{8}{9}\).
b) \({\log _5}\left( {x + 2} \right) \le 1\)
Điều kiện: \(x + 2 > 0 \Leftrightarrow x > - 2\)
\(BPT \Leftrightarrow x + 2 \le {5^1} \Leftrightarrow x + 2 \le 5 \Leftrightarrow x \le 3\)
Kết hợp với điều kiện ta được nghiệm của bất phương trình là \( - 2 < x \le 3\).
\(h=3cos\left(\dfrac{\pi t}{6}+\dfrac{\pi}{3}\right)+12\le3.1+12=15\left(m\right)\)
" = " \(\Leftrightarrow\dfrac{\pi t}{6}+\dfrac{\pi}{3}=2k\pi\left(k\in Z\right)\) \(\Leftrightarrow\dfrac{t}{6}+\dfrac{1}{3}=2k\Leftrightarrow t=12k-2\)
t min ; t > 0 \(\Rightarrow k=1\) thì t = 10 (h)
a) Lượng nước biển bơm vào hồ sau \(t\) phút là: \(15t\) (lít).
Khối lượng muối có trong hồ sau \(t\) phút là: \(30.15t\) (gam).
Sau \(t\) phút kể từ khi bắt đầu bơm, lượng nước trong hồ là: \(6000 + 15t\) (lít).
Nồng độ muối tại thời điểm \(t\) phút kể từ khi bắt đầu bơm là: \(C\left( t \right) = \frac{{30.15t}}{{6000 + 15t}} = \frac{{30.15t}}{{15\left( {400 + t} \right)}} = \frac{{30t}}{{400 + t}}\)(gam/lít).
b) \(\mathop {\lim }\limits_{t \to + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{30t}}{{400 + t}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{30t}}{{t\left( {\frac{{400}}{t} + 1} \right)}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{30}}{{\frac{{400}}{t} + 1}} = \frac{{30}}{{0 + 1}} = 30\) (gam/lít).
Vậy nồng độ muối trong hồ càng dần về 30 gam/lít, tức là nước trong hồ gần như là nước biển, khi \(t \to + \infty \).