Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây tham khảo nhé ^^ http://olm.vn/hoi-dap/question/638304.html
\(xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\\ \Rightarrow yz+xz+xy=0\)
\(A=\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\\ \Leftrightarrow A=\frac{x^3y^3+x^3z^3+y^3z^3}{x^2y^2z^2}\)
Ta có :\(yz+xz+xy=0\)
\(\Rightarrow y^3x^3+x^3z^3+x^3y^3=-3xyz\left(y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz\right)\)
\(=-3xyz\left(yz+xz\right)\left(xz+xy\right)\left(yz+xy\right)\)
\(=-3xyz\left(-xy\right)\left(-yz\right)\left(-xz\right)\\ =3x^2y^2z^2\)
\(\Rightarrow A=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)
Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)
Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)
1/x + 1/y +1/z = 0
<=> xy+yz+zx = 0
<=> yz=-xy-zx
<=> yz/x^2+2yz = yz/x^2+yz-xy-zx = yz/(x-y).(x-z)
Tương tự : xz/y^2+2xz = xz/(y-x).(y-z) ; xy/z^2+2xy = xy/(z-x).(z-y)
=> A = yz/(x-y).(x-z) + xz/(y-x).(y-z) + xy/(z-x).(z-y)
= -yz.(y-z)-zx.(z-x)-xy.(x-y)/(x-y).(y-z).(z-x)
= z^2y-y^2z+x^2z-xz^2+y^2x-x^2y/(x-y).(y-z).(z-x)
= (x-y).(y-z).(z-x)/(x-y).(y-z).(z-x)
= 1
Tk mk nha
https://olm.vn/hoi-dap/question/255332.html
Bạn tham khảo ở đây nhé!! Cách của mình cũng giống của bạn này
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)nhân lần lượt với x; y; z, ta có:
\(1+\frac{x}{y}+\frac{x}{z}=0\)(1)
\(1+\frac{y}{z}+\frac{y}{x}=0\)(2)
\(1+\frac{z}{x}+\frac{z}{y}=0\)(3)
Từ: (1); (2) và (3) => \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}=-3\)(*)
Mặt khác: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)quy đồng ta có:
\(\frac{\left(xy+yz+zx\right)}{xyz}=0\)hay xy + yz + zx = 0
Hay: \(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right).\left(xy+yz+zx\right)=0\)
Khai triển, ta có:
\(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}=0\)
Vậy: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\right)=3\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\) (nhân 2 vế với\(xyz\ne0\))
=> x2 + 2yz = x2 + 2yz - xy - yz - xz = x2 - xz - xy + yz = x(x - z) - y(x - z) = (x - y)(x - z).
Tương tự,y2 + 2xz = (y - x)(y - z) ; z2 + 2xy = (z - x)(z - y)
\(\Rightarrow\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)
Bạn tham khảo tại đây:
Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)
\(\Rightarrow yz+zx+xy=0\)
Ta có : \(x^2+2yz=x^2+yz+yz\)
\(=x^2+yz-zx-xy\)
\(=x\left(x-z\right)-y\left(x-z\right)\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự : \(y^2+2xz=y^2+xz+xz\)
\(=y^2+xz-xy-yz\)
\(=y\left(y-x\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\)
\(z^2+2xy=\left(x-z\right)\left(y-z\right)\)
\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\) \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
Ta thấy rằng trong bài này nên áp dụng HĐT
Nếu a+b+c = 0 thì a3 + b3 + c3 = 3abc
Theo bài ra , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Ta có :
\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(\Leftrightarrow A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)(Vì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\))
Vậy A = 3
Chúc bạn hok tốt =))
3