Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
goi UCLN(5N+6,8N+7)=a
=>5n+6 chia hết cho a
8n+7 chia hết cho a
=>40n+48 chia hết cho a
40n+35 chia hết cho a
=>(40n+48)-(40n+35) chia hết cho a
=>13 chia hết cho a
mà 13 chia hết cho 1;13
=>a=1;13
ma a la UCLN (5n+8,8n+7)=>a=13
vay UCLN5n+6,8n+7)=13
Đặt ƯCLN(3n + 1 ; 5n + 4) = d với d khác 1.
Ta có 3.(5n + 4) - 5.(3n + 1) = 15n + 12 - 15n + 5 = 7 chia hết cho d.
Do d lớn nhất => d = 7
Tớ vừa làm rồi :
Đặt ƯCLN(3n + 1 ; 5n + 4) = d với d khác 1.
Ta có 3.(5n + 4) - 5.(3n + 1) = 15n + 12 - 15n + 5 = 7 chia hết cho d.
Do d lớn nhất => d = 7
ƯCLN(3n+1;5n+4) = d và d khác 0
có: 3.(5n+4)-5.(3n+1)=15n+12-15n+5=7 chia hết cho d
vì d lớn nhất =>d=7
hihihih **** nhe
1,Tìm x
11-(4x-3)=3(-2-x)
=>11-4x+3=-6-3x
=>11+3=-6-3x+4x
=>11+3+6=-3x+4x
=>20=x
=>x=20
Gọi d=ƯCLN(5n+6; 8n+7)
=> 5n+6 chia hết cho d
8n+7 chia hết cho d
=> 8.(5n+6) chia hết cho d
5.(8n+7) chia hết cho d
=>40n+48 chia hết cho d
40n+35 chia hết cho d
=>( 40n+48)-(40n+35) chia hết cho d
=>13 chia hết cho d
Vì 5n+6 và 8n+7 ko nguyên tố cùng nhau nên \(d\ne1\)
Vậy d=13 hay ƯCLN(5n+6;8n+7)=13
Gọi d là ƯCLN( 5n + 6 ; 8n + 7 ) = d ( d thuộc N )
Theo bài ra ta có :
5n + 6 chia hết cho d
Suy ra 8( 5n + 6 ) chia hết cho d
Hay 40n + 48 chia hết cho d
Lại có : 8n + 7 chia hết cho d
Suy ra 5( 8n + 7 ) chia hết cho d
Hay 40n + 35 chia hết cho d
Mà 40n + 38 chia hết cho d
Suy ra ( 40n + 38 ) - ( 40n + 35 ) chia hết cho d
Hay 3 chia hết cho d
Suy ra d = 1 ; 3
Mà 5n + 6 và 8n + 7 không nguyên tố cùng nhau
Suy ra d = 3
Vậy ƯCLN của 5n + 6 và 8n + 7 là 3