K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự. 

31 tháng 3 2017

Gọi d=ƯCLN(5n+6; 8n+7)

=> 5n+6 chia hết cho d

    8n+7 chia hết cho d

=> 8.(5n+6) chia hết cho d

5.(8n+7) chia hết cho d

=>40n+48 chia hết cho d

40n+35 chia hết cho d

=>( 40n+48)-(40n+35) chia hết cho d

=>13 chia hết cho d

Vì 5n+6 và 8n+7 ko nguyên tố cùng nhau nên \(d\ne1\)

Vậy d=13 hay ƯCLN(5n+6;8n+7)=13

31 tháng 3 2017

Gọi d là ƯCLN( 5n + 6 ; 8n + 7 ) = d ( d thuộc N )

Theo bài ra ta có :

 5n + 6 chia hết cho d

Suy ra 8( 5n + 6 ) chia hết cho d

Hay 40n + 48 chia hết cho d

Lại có : 8n + 7 chia hết cho d

Suy ra 5( 8n + 7 ) chia hết cho d

Hay 40n + 35 chia hết cho d

Mà 40n + 38 chia hết cho d

Suy ra ( 40n + 38 ) - ( 40n + 35 ) chia hết cho d

Hay 3 chia hết cho d

Suy ra d = 1 ; 3

Mà 5n + 6 và 8n + 7 không nguyên tố cùng nhau

Suy ra d = 3

Vậy ƯCLN của 5n + 6 và 8n + 7 là 3
 

13 tháng 12 2017

mình ko biet làm nha

12 tháng 11 2017

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

12 tháng 11 2017

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

25 tháng 11 2018

Gọi d thuộc ƯC(3n+2, 5n+3) thì

3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1

Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau

25 tháng 11 2018

k cho mik nha

26 tháng 1 2017

Gọi d là ƯCLN( 2n+3;3n+4)

=> 2n+3 chia hết cho d và 3n+4 chia hết cho d

=> (2n+3) - (3n+4) chia hết cho d

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> (6n+9) - (6n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(2n+3; 3n+4) = 1

Vậy  2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

26 tháng 1 2017

Các bn trả lời nhanh giùm mình nha.

20 tháng 10 2015

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

20 tháng 10 2015

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

gọi d là ước chung lớn nhất của A và B

  A chia hết cho d

  B chia hết cho d

=>A-B chia hết cho d

=>(n^4+3n^2+1) -(n^3+2n)-chia hết d

=>(n^4+3n^2+1) -n.(n^3+2n)chia hết d

=>((n^4+3n^2+1) - (n^4+3n^2)chia hết d

=>n^4+3n^2+1-n^4-3n^2 chia hết d

=>1chia hết d

=>d thuộc Ư(1)={1}

vậy A và B là 2 số nguyên tố cùng nhau

30 tháng 11 2019

Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath