Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j
a) Theo bài ra: \(a+2b⋮7\)
\(\Rightarrow3\left(a+2b\right)⋮7\)
\(\Rightarrow3a+6b⋮7\)
Ta có: (3a + 6b) + (4a + b)
= 7a + 7b
= 7(a + b) \(⋮\) 7
Do đó, (3a + 6b) + (4a + b)\(⋮\) 7
mà \(3a+6b⋮7\) nên 4a + b \(⋮\) 7
Vậy a + 2b chia hết cho 7 thì 4a + b chia hết cho 7
b) Theo bài ra: 2a + b \(⋮\) 11
\(\Rightarrow\) 5(2a + b) \(⋮\) 11
\(\Rightarrow\) 10a + 5b \(⋮\) 11
Ta có: (10a + 5b) + (a + 6b)
= 11a + 11b
= 11(a + b) \(⋮\) 11
Do đó, (10a + 5b) + (a + 6b) \(⋮\) 11
mà 10a + 5b \(⋮\) 11 nên a + 6b \(⋮\) 11
Vậy 2a + b chia hết cho 11 thì a + 6b chia hết cho 11
A.Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29
C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.
3 k nhé..