K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

2y² + 2x² = 5xy 
<=> 2y² - 5xy + 2x² = 0 
<=> (x - 2y)(2x - y) = 0 
=> x = 2y hoặc y = 2x 
Thay vào biểu thức ta có: 
+) Nếu x = 2y => (x - y)/(x + y) = (2y - y)/(2y + y) = y/3y = 1/3 
+) Nếu y = 2x => (x - y)/(x + y) = (x - 2x)/(x + 2x) = -x/3x = -1/3

23 tháng 6 2020

Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y

Giải: 

 Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)

Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)

Đặt: t = x/y ta có: 0 < t < 1 

(1) trở thành: \(2t^2-5t+2=0\)

<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)

<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)

<=> \(\left(2t-1\right)\left(t-2\right)=0\)

<=> t = 1/2 ( tm) 

Hoặc  t = 2 loại 

Với t = 1/2 ta có: x/y = 1/2 

<=> y = 2x 

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Đặt $x=ty$ ($0< t< 2$)

\(2x^2+y^2=5xy\)

\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)

\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)

\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)

\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$

Do đó:

\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Đặt $x=ty$ ($0< t< 2$)

\(2x^2+y^2=5xy\)

\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)

\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)

\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)

\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$

Do đó:

\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$2x^2+2y^2=5xy$

$\Leftrightarrow  2x^2-5xy+2y^2=0$

$\Leftrightarrow (2x-y)(x-2y)=0$

$\Leftrightarrow 2x=y$ hoặc $x=2y$

Do $0< x< y$ nên $2x=y$

Khi đó: \(P=\frac{2012x+2013y}{3x-2y}=\frac{2012x+2013.2x}{3x-2.2x}\\ =\frac{6038x}{-x}=-6038\)

2 tháng 1 2017

2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)

Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:

K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải