Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\\ T=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{8}\right)+...+\left(1-\dfrac{1}{4096}\right)\\ T=\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\)
Gọi \(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\)
\(2D=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\\ 2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\\ D=1-\dfrac{1}{4096}\)
(mk nhớ có cách khác rất hay nhưng quên mất rồi)
Thay \(D\) vào ta được
\(T=\left(1+1+1+...+1\right)-\left(1-\dfrac{1}{4096}\right)\\ T=12-\left(1-\dfrac{1}{4096}\right)\\ T=12-1+\dfrac{1}{4096}\\ T=11\dfrac{1}{4096}\)
Bài 1 :
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2017}\right)\) \(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1.2.3.4....2015.2016}{2.3.4.5...2016.2017}=\dfrac{1}{2017}\)
\(B=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}....\dfrac{99^2}{99.100}\)
\(=\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}....\dfrac{99.99}{99.100}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}=\dfrac{1.2.3...99}{2.3.4...100}=\dfrac{1}{100}\)
1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)
\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)
=>-4x=-2
hay x=1/2
2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)
=>21x=-50
hay x=-50/21
3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0(nhận) hoặc x=5(loại)
bai 1
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|-3,75=-2,,15\)
\(\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=1,6\\x+\dfrac{4}{15}=-1,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{28}{15}\end{matrix}\right.\)
Vậy ....
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
\(\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\dfrac{3}{4}\)
\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{2}\\\dfrac{3}{4}x-\dfrac{3}{4}=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\-1\end{matrix}\right.\)
bai 2
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
\(\left|\dfrac{1}{6}+x\right|=\dfrac{1}{4}-\left|y\right|\) (*)
với mọi x ta luôn có \(\left|\dfrac{1}{6}+x\right|\ge0\)
\(\Rightarrow\dfrac{1}{4}-\left|y\right|\ge0\)
\(\Rightarrow\left|y\right|\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{4}-\left|y\right|=\left|\dfrac{1}{4}-y\right|\)
Nên từ * \(\Rightarrow\left|\dfrac{1}{6}+x\right|=\left|\dfrac{1}{4}-y\right|\)
\(\Rightarrow\left|\dfrac{1}{6}+x\right|-\left|\dfrac{1}{4}-y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{6}+x=0\\\dfrac{1}{4}-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left|x-y\right|+\left|y+25\right|=0\)
với mọi x, y tao luôn có \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+25\right|\ge0\end{matrix}\right.\)
mà \(\left|x-y\right|+\left|y+25\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+25\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=-25\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-25\\y=-25\end{matrix}\right.\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
1/a +1/b +1/c = 0=> 1/a +1/b= 1/-c
=> 1/(a+ b)^3 = 1/(-c)^3
=> 1/ a^3+ 3a^2b+ 3ab^2+ b^3 = 1/-c^3
=> 1/a+ 1/b^3+ 1/c^3= 3/ -a^2b- ab^2
= -3/ ab(-c)= 3/abc
Bài 1:
(a)
Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:
\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)
\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)
\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)
Ta có đpcm.
(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.
Đặt
\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)
Khi đó:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)
\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$
(c):
Theo BĐT tam giác:
\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)
\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)
Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Ta có đpcm.
Bài 2:
Áp dụng BĐT Cô-si cho các số dương:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)
\(M=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\)
Áp dụng hằng đẳng thức mở rộng ta có:
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ac}\right)+\dfrac{3}{abc}\)
Hay: \(M=abc\left[\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ac}\right)+\dfrac{3}{abc}\right]=\dfrac{3abc}{abc}=3\)
https://olm.vn/hoi-dap/question/125053.html
BN THAM KHỎA LINK NÀY NHÉ BÀI NÀY TƯƠNG TỰ NAK