K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Bắt chước Geogebra để vẽ hình trên olm:

A B C D E G M N

a) Dễ thấy MN là đường trung bình tam giác GBC nên MN // BC. Do đó tứ giác MNCB là hình thang.(mình nghĩ đề là chứng minh MNCB là hình thang cân chứ? Cho nó phức tạp xíu:D)

b) Từ đề bài ta có ngay DE là đường trung bình tam giác ABC nên DE // BC. Kết hợp MN // BC suy ra MN // DE.

*Chứng minh EM // DM: Mình thấy nó hơi sai sai ở cái đề.

c) Đề có sai hem?

a: Xét ΔGBC có 

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2(1)

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

b: Xét ΔABC có 
D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình

=>DE//BC và DE=BC/2(2)

từ (1) và (2) suy ra DE//MN và DE=MN

hay DEMN là hình thang

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

6 tháng 9 2017

A B C M N P Q I K D

Trên tia đối của MP lấy điểm D sao cho MP=MD.

Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)

Mà BP=CQ => CD=CQ  => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2

=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị) 

M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ

=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị) 

 => \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD

=> Tam giác AIK cân tại A (đpcm)

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

28 tháng 12 2017

wefwef

30 tháng 7 2018

này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !

Mik vẽ là B bên trái và C bên phải nha

Ta có BE là đường trung tuyến => B1 = B2

Tương tự C1 = C2

Ta có  M , N là trung điểm của GB và GC => MN là đừng trung bình của tam giác GBC

=> MN // BC => MNCB là hình thang ( 1 )

Ta có : B1 = B2 ; C1 = C2

Mà B = C 

=> B2 = C2 ( 2 )

Từ  ( 1) và ( 2 ) => MNCB là hình thang cân 

T nha các bạn

Đề sai rồi bạn ơi:

Nếu tam giác ABC là tam giác bất kì thì trường

hợp hình thang BMNC là cân ko thể xảy ra.

MIK vẽ hình rồi

26 tháng 7 2017

A B C D E G F I K

a. Xét \(\Delta ABC\)

Ta có \(\hept{\begin{cases}AE=EB\\AD=DC\end{cases}\Rightarrow DE}\)là đường trung bình của tam giác ABC 

\(\Rightarrow\)DE song song BC và \(DE=\frac{1}{2}BC\left(1\right)\)

Xét \(\Delta BGC\)có \(\hept{\begin{cases}BI=IG\\CK=KG\end{cases}\Rightarrow IK}\)là đường trung bình của tam giác BGC 

\(\Rightarrow\)IK song song BC và \(IK=\frac{1}{2}BC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow DE\)song song \(IK\)và \(DE=IK\)

b. Theo tính chất của trọng tâm ta có

\(GF=\frac{1}{3}AF\);\(AG=\frac{2}{3}AF\left(3\right)\)

Xét \(\Delta ABG\)có IE là đường trung bình suy ra \(IE=\frac{1}{2}AG\left(4\right)\)

Từ (3) và (4) \(\Rightarrow IE=\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AF=\frac{1}{3}AF=GF\)

Vậy \(IE=GF\)

  

a: Xét tứ giác MNCB có MN//CB

nên MNCB là hình thang

Hình thang MNCB có \(\widehat{MBC}=\widehat{NCB}\)

nên MNCB là hình thang cân

b: MNCB là hình thang cân

=>MB=NC và MC=NB

AM+MB=AB

AN+NC=AC

mà MB=NC và AB=AC

nên AM=AN

Xét ΔANB và ΔAMC có

AN=AM

NB=MC

AB=AC

Do đó: ΔANB=ΔAMC

=>\(\widehat{ANB}=\widehat{AMC}=90^0\)

=>BN vuông góc AC

Xét ΔABC có

BN,CM là đường cao

BN cắt CM tại O

Do đó: O là trực tâm của ΔABC

=>AO\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1) và (2) suy ra A,O,I thẳng hàng