Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}\)
\(=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}=5\)
\(B=\sqrt{7+\sqrt{33}}+\sqrt{7-\sqrt{33}}\)
\(\Rightarrow\)\(\sqrt{2}B=\sqrt{14+2\sqrt{33}}+\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{\left(\sqrt{11}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\sqrt{11}+\sqrt{3}+\sqrt{11}-\sqrt{3}=2\sqrt{11}\)
\(\Rightarrow\)\(B=\sqrt{22}\)
a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16
b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)
\(=\sqrt{21}+4-\sqrt{21}=4\)
\(a,\sqrt{33+20\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{8+2.2\sqrt{2}.5+25}-\sqrt{2-2.\sqrt{2}.3+9}\)
\(=\sqrt{\left[2\sqrt{2}+5\right]^2}-\sqrt{\left[\sqrt{2}-3\right]^2}\)
\(=2\sqrt{2}+5-\left(3-\sqrt{2}\right)\)
\(=2+\sqrt{2}\)
chúc bn học tốt
a) \(\sqrt{\left(2\sqrt{2}+5\right)^2}\) \(-\) \(\sqrt{\left(3-\sqrt{2}\right)^2}\)= \(|2\sqrt{2}+5|\)\(-\)\(|3-\sqrt{2}|\)
\(=\)\(2\sqrt{2}+5-3+\sqrt{2}=2+3\sqrt{2}\)
b)\(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)
a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)
= \(6-\sqrt{15}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)
c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)
= \(7\)
d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)
a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15
b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10
c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7
d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22
a, \(\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}\)\(=\sqrt{\frac{1}{2}.\left(6-2\sqrt{5}\right)}\)\(+\sqrt{\frac{1}{2}.\left(14-2.3\sqrt{5}\right)}\)
\(=\sqrt{\frac{1}{2}.\left(\sqrt{5}-1\right)^2}\)\(+\sqrt{\frac{1}{2}.\left(3-\sqrt{5}\right)^2}\)\(=\frac{\sqrt{2}}{2}.\left(\sqrt{5}-1\right)+\frac{\sqrt{2}}{2}.\left(3-\sqrt{5}\right)\)
\(=\frac{\sqrt{2}}{2}.2=\sqrt{2}\)
Câu b đề đúng ko bn
a: \(=6-\sqrt{15}+2\sqrt{15}=6+\sqrt{15}\)
b: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}=7\)
c: \(=10+5\sqrt{10}-5\sqrt{10}=10\)
d: \(=22-\sqrt{198}+\sqrt{198}=22\)
\(\text{a)}\)\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-5\sqrt{10}\)
\(\Leftrightarrow10\)
\(\text{b)}\)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-2\sqrt{21}-7+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-7\)
\(A=\dfrac{\sqrt{10+2\sqrt{21}}}{\sqrt{2}}+\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}-\dfrac{2}{\sqrt{2}}\sqrt{8-2\sqrt{7}}\)
\(A=\dfrac{\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}-\dfrac{2}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}-2\sqrt{7}+2\right)=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(B=\dfrac{\sqrt[3]{2}\left(\sqrt[3]{2}+1+\sqrt[3]{2^2}\right)}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{2}\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\sqrt[3]{2}\)
a) \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(A^2=\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2\)
\(A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(A^2=6+2\sqrt{3^2-5}\)
\(A^2=6+4\)
\(A^2=10\)
\(\Rightarrow\orbr{\begin{cases}A=10\\A=-10\end{cases}}\)
Mà \(A>0\Rightarrow A=10\)
b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(B^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(B^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(B^2=8-2\sqrt{4^2-7}\)
\(B^2=8-6\)
\(B^2=2\)
\(\Rightarrow\orbr{\begin{cases}B=2\\B=-2\end{cases}}\)
Mà \(B< 0\Rightarrow B=-2\)
Cách khác :
b) \(4-\sqrt{7}=\frac{8-2\sqrt{7}}{2}=\frac{7-2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2\)
\(4+\sqrt{7}=\frac{8+2\sqrt{7}}{2}=\frac{7+2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2\)
do đó : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2}-\sqrt{\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2}=\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}=-\sqrt{2}\)
tương tự câu a.
\(A=\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\)
\(A^2=\left(\sqrt{5+\sqrt{21}}^2+2\sqrt{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+\sqrt{5-\sqrt{21}}^2\right)\)
\(A^2=5+\sqrt{21}+\sqrt{4\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+5-\sqrt{21}\)
\(A^2=10+\sqrt{4.\left(25-21\right)}\)
\(A^2=10+\sqrt{4.4}=10+4=14\)
\(A=\sqrt{14}\)
Tương tự
đụ mạ mi