\(a,\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

a, \(\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}\)\(=\sqrt{\frac{1}{2}.\left(6-2\sqrt{5}\right)}\)\(+\sqrt{\frac{1}{2}.\left(14-2.3\sqrt{5}\right)}\)

\(=\sqrt{\frac{1}{2}.\left(\sqrt{5}-1\right)^2}\)\(+\sqrt{\frac{1}{2}.\left(3-\sqrt{5}\right)^2}\)\(=\frac{\sqrt{2}}{2}.\left(\sqrt{5}-1\right)+\frac{\sqrt{2}}{2}.\left(3-\sqrt{5}\right)\)

\(=\frac{\sqrt{2}}{2}.2=\sqrt{2}\)

Câu b đề đúng ko bn

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:
a)

\(\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{14-6\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}+\sqrt{\frac{3^2+5-2.3\sqrt{5}}{2}}\)

\(=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(3-\sqrt{5})^2}{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{3-\sqrt{5}}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

b)

\(\sqrt{8-2\sqrt{7}}-\sqrt{16+5\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{\frac{32+10\sqrt{7}}{2}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{\frac{5^2+7+2.5\sqrt{7}}{2}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{\frac{(5+\sqrt{7})^2}{2}}=\sqrt{7}-1-\frac{5+\sqrt{7}}{\sqrt{2}}\)

\(=\frac{\sqrt{14}-\sqrt{2}-5-\sqrt{7}}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
1 tháng 5 2019

Lời giải:
a)

\(\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{14-6\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}+\sqrt{\frac{3^2+5-2.3\sqrt{5}}{2}}\)

\(=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(3-\sqrt{5})^2}{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{3-\sqrt{5}}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

b)

\(\sqrt{8-2\sqrt{7}}-\sqrt{16+5\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{\frac{32+10\sqrt{7}}{2}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{\frac{5^2+7+2.5\sqrt{7}}{2}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{\frac{(5+\sqrt{7})^2}{2}}=\sqrt{7}-1-\frac{5+\sqrt{7}}{\sqrt{2}}\)

\(=\frac{\sqrt{14}-\sqrt{2}-5-\sqrt{7}}{\sqrt{2}}\)

28 tháng 6 2019

a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16

b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)

\(=\sqrt{21}+4-\sqrt{21}=4\)

Mình coi lại r  \(\sqrt{16}\) nhé

9 tháng 6 2019

a) \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A^2=\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2\)

\(A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(A^2=6+2\sqrt{3^2-5}\)

\(A^2=6+4\)

\(A^2=10\)

\(\Rightarrow\orbr{\begin{cases}A=10\\A=-10\end{cases}}\)

Mà \(A>0\Rightarrow A=10\)

b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(B^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)

\(B^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)

\(B^2=8-2\sqrt{4^2-7}\)

\(B^2=8-6\)

\(B^2=2\)

\(\Rightarrow\orbr{\begin{cases}B=2\\B=-2\end{cases}}\)

Mà \(B< 0\Rightarrow B=-2\)

9 tháng 6 2019

Cách khác :

b) \(4-\sqrt{7}=\frac{8-2\sqrt{7}}{2}=\frac{7-2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2\)

\(4+\sqrt{7}=\frac{8+2\sqrt{7}}{2}=\frac{7+2\sqrt{7}+1}{2}=\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2\)

do đó : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\left(\frac{\sqrt{7}-1}{\sqrt{2}}\right)^2}-\sqrt{\left(\frac{\sqrt{7}+1}{\sqrt{2}}\right)^2}=\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}=-\sqrt{2}\)

tương tự câu a.

22 tháng 7 2016

a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(\sqrt{7}+1-\sqrt{7}+1=2\)

=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)

b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

             =  \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)

=>  B=\(\sqrt{5}+1\)

c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)

=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)

                 =  \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

                =  \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)\(2\sqrt{5}\)

=> A=\(\sqrt{5}\)

Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(A-\sqrt{6-2\sqrt{5}}\)

\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1

22 tháng 7 2016

Phần a) chỗ cuối viết thiếu dấu =.

Sẽ là A=\(\sqrt{2}\)nha

23 tháng 9 2017

a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

nhân cả hai vế với \(\sqrt{2}\), ta được:

\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)

\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

\(=-2\)

\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

12 tháng 5 2018

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

11 tháng 8 2017

cau a,b,c thay no co chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)

dang nay co 2 cach

C1: nhanh kho nhin de sai

VD: cau B

\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)

B^3=40+3(2)(B)

B^3=40+6B

B=4

C2: hoi dai nhung de nhin

dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)

de thay B=a+b

            ab=2

            a^3+b^3=40

suy ra B^3=a^3+b^3+3ab(a+b)

B^3=40+6B

B=4

giai tuong tu

con co cach nay nhung it su dung vi kho tim

C3: dua ve tong lap phuong

VD:cau B

 \(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)

\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)

de thay

B=4

cau d)

dung CT nay

\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)

ap dung vao bai

\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)

nhanh vao

\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.