Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/Áp dụng bất đẳng thức cô si, ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{\left(a+b+c\right)}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 1:
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
Do đó: ΔBAC đồng dạng với ΔBHA
b: Xét ΔBAC vuông tại A có AH là đường cao
nên \(HA^2=HB\cdot HC\)
c: Ta có: ΔHAB vuông tạiH
mà HM là đường trung tuyến
nên HM=AM
TA có: ΔHAC vuông tại H
mà HNlà đường trung tuyến
nên HN=AN
Xét ΔNAM và ΔNHM có
NA=NH
AM=HM
NM chung
Do đó: ΔNAM=ΔNHM
Suy ra: góc NAM=góc NHM=90 độ
=>NAMH là tứ giác nội tiếp đường kính NM
=>O là trung điểm của NM
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
a)\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
\(\Leftrightarrow\begin{cases}c< 0\\ab+bc+ca+c^2=c^2\end{cases}\)\(\Leftrightarrow ab+bc+ca=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\)
Đpcm
Tuyển " sư phụ "............................~~ K thành công !!!
Bài 1:ta có a+b+c=0
=> a+b=-c ; a+c=-b ; b+c=-a
M= a(a+b)(a+c)= a(-c)(-b)=abc
N = b(b+c)(b+a)=b(-a)(-c)=abc
P=c(c+a)(c+b)= c(-b)(-a)=abc
=> M=N=P
vế trái= \(\left(b+c\right)^2\)-a2=(a+b+c)(b+c-a) = 2p(2p-a-a)=4p(p-a)= VP
=> đpcm
à thôi sorry. Ko cần nữa đâu
Yahoo đầy