K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

1 thiên niên kỉ = 1000 năm

0 đến 999 là thiên niên kỷ 1

1000 đến 1999 là thiên niên kỷ 2

2000 đến 2999 là thiên niên kỷ 3

năm 4 chữ số là lấy số 1 chữ số đầu công với 1 là cách xác định thiên niên kỷ

vậy năm 2017 là thiên niên kỷ 3

27 tháng 10 2017

1 thiên niên kỉ là 1000 năm á bạn hả

10 tháng 4 2018

Ví dụ câu trần thuật đơn có từ là:

-Em là một học sinh              

+Em: CN, cấu tạo từ danh từ

+là một học sinh: VN, cấu tạo từ cụm danh từ

15 tháng 1 2016

dân ta phải biết sử ta

cái gì ko biết cứ tra google

2 tháng 12 2020

số nguyên tố là tập hợp những số tự nhiên chỉ có thể chia hết cho 1 và chính nó. Theo đó, nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì đó là số nguyên tố. Đặc biệt, bạn cần lưu ý rằng có hai trường hợp không được xếp là số nguyên tố, đấy chính là số 0 và số 1.

16 tháng 11 2017

1,  Một tổng chia  cho 1 số thì   chính  bằng từng số hạng của tổng chia cho số đó

Dạng tổng quát \(\left(a+b\right)\div m=a\div m+b\div m\)

2, Số nguyên tố là số  chỉ có hai ước đó là 1 và chính nó .  Ví dụ : 2 ( 2 là số nguyên tố chẵn duy nhất ) ; 3;5;7;....

Hợp số là số có nhiều hơn 2 ước . Ví dụ : 4,10,12,100,...

3, Hai số nguyên tố cùng nhau là hai số có ước chung lớn nhất của chúng bằng 1 : Ví dụ 3 và 4 là hai số nguyên tố cùng nhau 

1: viết các công thức về luỹ thừa với số mũ tự nhiên. Cho ví dụ2: So sánh tính chất cơ bản của phép cộng và phép nhân số tự nhiên, số nguyên, phân số3: Với điều kiện nào thì hiệu của hai số tự nhiên cũng là số tự nhiên? Hiệu của hai số nguyên cũng là số nguyên? cho ví dụ4:Với điều kiện nào thì thương của hai số tự nhiên cũng là số tự nhiên? Thương của hai phân số cũng là...
Đọc tiếp

1: viết các công thức về luỹ thừa với số mũ tự nhiên. Cho ví dụ

2: So sánh tính chất cơ bản của phép cộng và phép nhân số tự nhiên, số nguyên, phân số

3: Với điều kiện nào thì hiệu của hai số tự nhiên cũng là số tự nhiên? Hiệu của hai số nguyên cũng là số nguyên? cho ví dụ

4:Với điều kiện nào thì thương của hai số tự nhiên cũng là số tự nhiên? Thương của hai phân số cũng là phân số? Cho ví dụ

5:Phát biểu ba bài toán cơ bản về phân số. Cho ví dụ minh hoạ

6: Phát biểu các dấu hiệu chia hết cho 2,3,5,9

Những số như thế nào thì chia hết cho cả 2 và 5? Cho ví dụ.

Những số như thế nào thi chia hết cho cả 2,3,5 và 9? Cho ví dụ

7: Trong định nghĩa số nguyên và hợp số, có điểm nào giống nhau, điểm nào khác nhau? Tích của hai số  nguyên tố là 1 số nguyên tố hay hợp số?

Giải hộ mình nha, cảm ơn nhiều

4
30 tháng 4 2015

mình kô pit. Chúc bạn may mắn lần sau nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaâ

30 tháng 4 2015

Hix làm ơn đi mà ai giúp đi. Sắp nộp rùi huhu

Không phải mọi tập hợp đều cần phải liệt kê rành mạch theo thứ tự nào đó. Chúng có thể được mô tả bằng các tính chất đặc trưng cho các phần tử của chúng mà nhờ đó có thể xác định một đối tượng nào đó có thuộc tập hợp này hay không.

  • Tập hợp có thể được xác định bằng lời:

A là tập hợp bốn số nguyên dương đầu tiên.

B là tập hợp các màu trên quốc kỳ Pháp.

  • Có thể xác định một tập hợp bằng cách liệt kê các phần tử của chúng giữa cặp dấu { }, chẳng hạn:

C = {4, 2, 1, 3}

D = {Đ;O;T;R;A;N;G;X;H}

Các tập hợp có nhiều phần tử có thể liệt kê một số phần tử. Chẳng hạn tập hợp 1000 số tự nhiên đầu tiên có thể liệt kê như sau:

{0, 1, 2, 3,..., 999},

Tập các số tự nhiên chẵn có thể liệt kê:

{2, 4, 6, 8,... }.

Tập hợp F của 20 số chính phương đầu tiên có thể cho như sau

F = {{\displaystyle n^{2}}n^{2} | n là số nguyên và 0 ≤ n ≤ 19}

  • Tập hợp có thể xác định bằng đệ quy. Chẳng hạn tập các số tự nhiên lẻ L có thể cho như sau:
  1. {\displaystyle 1\in L}1\in L
  2. Nếu {\displaystyle n\in L}n\in L thì {\displaystyle n+2\in L.}n+2\in L.

Trong toán học, tập hợp có thể hiểu tổng quát là một sự tụ tập của một số hữu hạn hay vô hạn các đối tượng nào đó. Người ta khẳng định những đối tượng này được gọi là các phần tử của tập hợp và bất kỳ một đối tượng nào cũng đều có thể được đưa vào một tập hợp. Tập hợp là một trong những khái niệm nền tảng nhất của toán học hiện đại. Ngành toán học nghiên cứu về tập hợp là lý thuyết tập hợp.

Trong lý thuyết tập hợp, người ta xem tập hợp là một khái niệm nguyên thủy, không định nghĩa. Nó tồn tại theo các tiên đề được xây dựng một cách chặt chẽ. Khái niệm tập hợp là nền tảng để xây dựng các khái niệm khác như số, hình, hàm số... trong toán học.

Nếu a là phần tử của tập hợp A, ta ký hiệu a {\displaystyle \in }\in A. Khi đó, ta cũng nói rằng phần tử a thuộc tập hợp A.

Một tập hợp có thể là một phần tử của một tập hợp khác. Tập hợp mà mỗi phần tử của nó là một tập hợp còn được gọi là họ tập hợp.

Lý thuyết tập hợp cũng thừa nhận có một tập hợp không chứa phần tử nào, được gọi là tập hợp rỗng, ký hiệu là {\displaystyle \emptyset }\emptyset. Các tập hợp có chứa ít nhất một phần tử được gọi là tập hợp không rỗng.

Ngày nay, một phần của lý thuyết tập hợp đã được nhiều nước đưa vào giáo dục phổ thông, thậm chí ngay từ bậc tiểu học.

Nhà toán học Georg Cantor được coi là ông tổ của lý thuyết tập hợp. Để ghi nhớ những đóng góp của ông cho lý thuyết tập hợp nói riêng và toán học nói chung, tên ông đã được đặt cho một ngọn núi ở Mặt Trăng.

Không phải mọi tập hợp đều cần phải liệt kê rành mạch theo thứ tự nào đó. Chúng có thể được mô tả bằng các tính chất đặc trưng cho các phần tử của chúng mà nhờ đó có thể xác định một đối tượng nào đó có thuộc tập hợp này hay không.

  • Tập hợp có thể được xác định bằng lời:

A là tập hợp bốn số nguyên dương đầu tiên.

B là tập hợp các màu trên quốc kỳ Pháp.

  • Có thể xác định một tập hợp bằng cách liệt kê các phần tử của chúng giữa cặp dấu { }, chẳng hạn:

C = {4, 2, 1, 3}

D = {Đ;O;T;R;A;N;G;X;H}

Các tập hợp có nhiều phần tử có thể liệt kê một số phần tử. Chẳng hạn tập hợp 1000 số tự nhiên đầu tiên có thể liệt kê như sau:

{0, 1, 2, 3,..., 999},

Tập các số tự nhiên chẵn có thể liệt kê:

{2, 4, 6, 8,... }.

Tập hợp F của 20 số chính phương đầu tiên có thể cho như sau

F = {{\displaystyle n^{2}}n^{2} | n là số nguyên và 0 ≤ n ≤ 19}

  • Tập hợp có thể xác định bằng đệ quy. Chẳng hạn tập các số tự nhiên lẻ L có thể cho như sau:
  1. {\displaystyle 1\in L}1\in L
  2. Nếu {\displaystyle n\in L}n\in L thì {\displaystyle n+2\in L.}n+2\in L.

mình chỉ có như thế này thôi thông cảm

11 tháng 1 2016

sai rồi nguyenmanhtrung

 

14 tháng 5 2015

Hiệu của 2 số tự nhiên là 2 số tự nhiên khi Số bị trừ \(\ge\)  Số trừ.
Hiệu của 2 số nguyên là số nguyên khi Số bị trừ và số trừ \(\in\)  Z
Vd: 4 - 2 = 2
      -3 - 1 = -4
Thương của số tự nhiên là số tự nhiên khi Số bị trừ \(\in B\)  Số trừ.
Thương của hai phân số a/b và c/d là p/s khi b,c,d khác 0

7 tháng 5 2017

Thương thì làm gì có số bị trừ với số trừ hả SAKURA thủ lĩnh thẻ bài