K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Không phải mọi tập hợp đều cần phải liệt kê rành mạch theo thứ tự nào đó. Chúng có thể được mô tả bằng các tính chất đặc trưng cho các phần tử của chúng mà nhờ đó có thể xác định một đối tượng nào đó có thuộc tập hợp này hay không.

  • Tập hợp có thể được xác định bằng lời:

A là tập hợp bốn số nguyên dương đầu tiên.

B là tập hợp các màu trên quốc kỳ Pháp.

  • Có thể xác định một tập hợp bằng cách liệt kê các phần tử của chúng giữa cặp dấu { }, chẳng hạn:

C = {4, 2, 1, 3}

D = {Đ;O;T;R;A;N;G;X;H}

Các tập hợp có nhiều phần tử có thể liệt kê một số phần tử. Chẳng hạn tập hợp 1000 số tự nhiên đầu tiên có thể liệt kê như sau:

{0, 1, 2, 3,..., 999},

Tập các số tự nhiên chẵn có thể liệt kê:

{2, 4, 6, 8,... }.

Tập hợp F của 20 số chính phương đầu tiên có thể cho như sau

F = {{\displaystyle n^{2}}n^{2} | n là số nguyên và 0 ≤ n ≤ 19}

  • Tập hợp có thể xác định bằng đệ quy. Chẳng hạn tập các số tự nhiên lẻ L có thể cho như sau:
  1. {\displaystyle 1\in L}1\in L
  2. Nếu {\displaystyle n\in L}n\in L thì {\displaystyle n+2\in L.}n+2\in L.

Trong toán học, tập hợp có thể hiểu tổng quát là một sự tụ tập của một số hữu hạn hay vô hạn các đối tượng nào đó. Người ta khẳng định những đối tượng này được gọi là các phần tử của tập hợp và bất kỳ một đối tượng nào cũng đều có thể được đưa vào một tập hợp. Tập hợp là một trong những khái niệm nền tảng nhất của toán học hiện đại. Ngành toán học nghiên cứu về tập hợp là lý thuyết tập hợp.

Trong lý thuyết tập hợp, người ta xem tập hợp là một khái niệm nguyên thủy, không định nghĩa. Nó tồn tại theo các tiên đề được xây dựng một cách chặt chẽ. Khái niệm tập hợp là nền tảng để xây dựng các khái niệm khác như số, hình, hàm số... trong toán học.

Nếu a là phần tử của tập hợp A, ta ký hiệu a {\displaystyle \in }\in A. Khi đó, ta cũng nói rằng phần tử a thuộc tập hợp A.

Một tập hợp có thể là một phần tử của một tập hợp khác. Tập hợp mà mỗi phần tử của nó là một tập hợp còn được gọi là họ tập hợp.

Lý thuyết tập hợp cũng thừa nhận có một tập hợp không chứa phần tử nào, được gọi là tập hợp rỗng, ký hiệu là {\displaystyle \emptyset }\emptyset. Các tập hợp có chứa ít nhất một phần tử được gọi là tập hợp không rỗng.

Ngày nay, một phần của lý thuyết tập hợp đã được nhiều nước đưa vào giáo dục phổ thông, thậm chí ngay từ bậc tiểu học.

Nhà toán học Georg Cantor được coi là ông tổ của lý thuyết tập hợp. Để ghi nhớ những đóng góp của ông cho lý thuyết tập hợp nói riêng và toán học nói chung, tên ông đã được đặt cho một ngọn núi ở Mặt Trăng.

Không phải mọi tập hợp đều cần phải liệt kê rành mạch theo thứ tự nào đó. Chúng có thể được mô tả bằng các tính chất đặc trưng cho các phần tử của chúng mà nhờ đó có thể xác định một đối tượng nào đó có thuộc tập hợp này hay không.

  • Tập hợp có thể được xác định bằng lời:

A là tập hợp bốn số nguyên dương đầu tiên.

B là tập hợp các màu trên quốc kỳ Pháp.

  • Có thể xác định một tập hợp bằng cách liệt kê các phần tử của chúng giữa cặp dấu { }, chẳng hạn:

C = {4, 2, 1, 3}

D = {Đ;O;T;R;A;N;G;X;H}

Các tập hợp có nhiều phần tử có thể liệt kê một số phần tử. Chẳng hạn tập hợp 1000 số tự nhiên đầu tiên có thể liệt kê như sau:

{0, 1, 2, 3,..., 999},

Tập các số tự nhiên chẵn có thể liệt kê:

{2, 4, 6, 8,... }.

Tập hợp F của 20 số chính phương đầu tiên có thể cho như sau

F = {{\displaystyle n^{2}}n^{2} | n là số nguyên và 0 ≤ n ≤ 19}

  • Tập hợp có thể xác định bằng đệ quy. Chẳng hạn tập các số tự nhiên lẻ L có thể cho như sau:
  1. {\displaystyle 1\in L}1\in L
  2. Nếu {\displaystyle n\in L}n\in L thì {\displaystyle n+2\in L.}n+2\in L.

mình chỉ có như thế này thôi thông cảm

8 tháng 10 2018

Có ai giúp mk hông, huhu

8 tháng 10 2018

Bn phải giải thích chứ. Đề bài ko rõ ràng lm sao đc

#Mimi#

8 tháng 9 2018

Mỗi tập xuất bản 2 năm một lần, nên trong 10 năm mỗi tập xuất bản số lần là :

10 : 2 = 5 ( lần )

Trong 10 năm sẽ xuất bản số tập là :
7 x 5 = 35 ( lần )

Đáp số : 35 lần

18 tháng 8 2015

1) 6x+2=216=63

=>x+2=3

=>x=1

2)72-(15+x)=5.22

49-15-x=5.4

34-x=20

x=14

3)[(6x-72):2-84].28=5628

(3x-36-84).28=5628

3x-36-84=201

3x-120=201

3x=321

x=107

4)3x-2.4=324

3x-2=81=34

=>x-2=4

x=6

18 tháng 8 2015

\(6^{x+2}=216\Leftrightarrow6^x=216:6^2=6;x=1\)\(7^2-\left(15+x\right)=5.2^2\Leftrightarrow49-\left(15+x\right)=20\)

\(15+x=49-20=29;x=14\)

21 tháng 8 2015

1.

Trên tia AB có AN<AM

=>N là điểm nằm giữa A và B

=>AN+NB=AB

=>2cm+NB=9cm

=>NB        =9cm - 2cm = 7cm

Lại có

Trên cùng tia AB có AM<AB

=>M là điểm nằm giữa A và B

=>AM+MB=AB

=>7cm+MB=9cm

=>MB        =9cm - 7cm = 2cm

2.

a)Trong TH có thước đo thì người ta sẽ tính một nửa khúc gỗ là 5m

 rồi lấy thước đo 5m trên khúc gỗ rồi đánh dấu chia đôi khúc gỗ đó ra

   Trong TH không có thước đo thì người ta lấy sợi dây kéo căng thước từ đầu

này sang đầu kia rồi cắt phần thừa(nếu có)

Sau đó người ta gấp đôi sợi dây đó lại rồi lại đặt vào khúc gỗ

Đánh dấu chỗ sợi dây kết thúc ở khúc gỗ

2 tháng 8 2017

u mk se ket ban voi ban

2 tháng 8 2017

mk kb với mk là fan của kaito kid đó

31 tháng 7 2017

minh đồng ý với ý kiến của sakura 

31 tháng 7 2017

đồng ý

8 tháng 11 2018

Ư(12) ={1;2;3;4;6;12} 

Bọn mik học cấp 2 là có 12 môn tính cả thể dục 

8 tháng 11 2018

Ư(12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}

7 tháng 4 2020

Đáp án:

 x=2018x=−2018

Giải thích các bước giải:

Ta có:

x+(x+1)+(x+2)+(x+3)+.......+2018+2019=2019x+(x+1)+(x+2)+(x+3)+.......+2018+2019=2019

x+(x+1)+(x+2)+(x+3)+.......+2018=0⇒x+(x+1)+(x+2)+(x+3)+.......+2018=0

Số số hạng là: S cuiS đuKhong cách+1=2018x1+1=2019xSố cuối−Số đầuKhoảng cách+1=2018−x1+1=2019−x

Trung bình cộng: S đu+s cui2=2018+x2Số đầu+số cuối2=2018+x2

Như vậy ta được:

(2019x)2018+x2=0(2019−x)2018+x2=0

2019x=0x=2019⇒2019−x=0⇒x=2019 (loại) (vì nếu x=2019 thì số số hạng là 0) hoặc 2018+x=0x=20182018+x=0⇒x=−2018

Vậy x=-2018

8 tháng 4 2020

bạn làm đúng rồi nhé

chúc bạn học tốt@