Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I F
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
=)))))))))))))))))))))
a: Xét ΔABC có
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
\(\Leftrightarrow\widehat{BIC}=120^0\)
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
Em tham khảo tại link này nhé.
Câu hỏi của Tan Dang - Toán lớp 7 - Học toán với OnlineMath
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Kẻ IG là phân giác của góc BIC
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ
=>góc BIC=120 độ
=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ
Xét ΔIEB và ΔIGB có
góc EIB=góc GIB
IB chung
góc IBE=góc IBG
Do đó: ΔIEB=ΔIGB
Suy ra: IE=IG(1)
Xét ΔIGC và ΔIDC có
góc GIC=góc DIC
IC chung
góc GIC=góc DIC
Do đó: ΔIGC=ΔIDC
Suy ra: IG=ID
=>ID=IE
1. A B C D F 1 2 2 1 1 2. A B H D M C
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm