Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể phân tích từng vế trong đẳng thức thì sẽ ra vế còn lại hoặc có thể phân tích cả hai vế.
Bài 1:
Ta có: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b\right)^2-2\cdot\left(2a-3b\right)\cdot\left(2b-3a\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b-2b+3a\right)^2\)
\(=\left(5a-5b\right)^2\)
\(=\left[5\cdot\left(a-b\right)\right]^2=25\left(a-b\right)^2\)
Thay a-b=0 vào biểu thức \(A=25\left(a-b\right)^2\), ta được:
\(A=25\cdot0^2=0\)
Vậy: Khi a-b=0 thì A=0
Bài 3:
a) Ta có: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+4\right)^2-16\ge-16\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2+8x\) là -16 khi x=-4
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
\(3y^2\left(a-3x\right)-a\left(a-3x\right)=\left(3y^2-a\right)\left(a-3x\right)\)
Vì \(a^2\ge0\forall a,b^2\ge0\forall b\\ \)
nên \(a^2+b^2=1\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a^2=1\\b^2=0\end{matrix}\right.\\\left\{{}\begin{matrix}a^2=0\\b^2=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\\b=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Ta có: M = \(2a^6-3a^4+2b^4-3b^4=a^4\left(2a^2-3\right)-b^4\)
+ Với a = 1, b = 0, thay vào M ta có:
M = \(1^4\left(2.1^2-3\right)-0^4=-1\)
+ Với a = -1, b = 0, thay vào M ta có:
M = \(\left(-1\right)^4\left\{\left(-1\right)^4\left[2\left(-1\right)^2-3\right]\right\}-0^4=-1\)
+ Với a = 0, b = 1, thay vào M ta có:
M = \(0^4\left(2.0^2-3\right)-1^4=-1\)
+ Với a = 0, b = -1, thay vào M ta có:
M = \(0^4\left(2.0^2-3\right)-\left(-1\right)^4=-1\)
Vậy khi \(a^2+b^2=1\) thì M = -1.
Lời giải:
Đặt \((3a+b-c,3b+c-a,3c+a-b)=(x,y,z)\)
\(\Rightarrow \left\{\begin{matrix} 3a+3b+3c=x+y+z\\ a+2b=\frac{x+y}{2}\\ b+2c=\frac{y+z}{2}\\ c+2a=\frac{x+z}{2}\end{matrix}\right.\)
Bài toán trở thành:
Với các số thực $x,y,z$ thỏa mãn \((x+y+z)^3=24+x^3+y^3+z^3\)
CMR: \((x+y)(y+z)(x+z)=8\)
------------------------------------------------
Áp dụng HĐT \(m^3+n^3=(m+n)^3-3mn(m+n)\) ta có:
\((x+y+z)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow (x+y+z)^3=24+(x+y)^3-3xy(x+y)+z^3\)
\(\Leftrightarrow (x+y+z)^3=24+(x+y+z)^3-3xy(x+y)-3z(x+y)(x+y+z)\)
\(\Leftrightarrow 3(x+y)[z(x+y+z)+xy]=24\)
\(\Leftrightarrow (x+y)[z(y+z)+x(z+y)]=8\)
\(\Leftrightarrow (x+y)(z+x)(z+y)=8\) (đpcm)
a) a2 + b2 + 2ab + 2a + 2b + 1
= (a2 + b2 + 2ab) + (2a + 2b) + 1
= (a + b)2 + 2(a + b) + 1
= (a + b + 1)2
b) a3 - 3a + 3b - b3
= (a3 - b3) - (3a - 3b)
= (a - b)(a2 - ab + b2) - 3(a - b)
= (a - b)(a2 - ab + b2 - 3)
c) x2 + 2x - 15
= (x2 + 2x + 1) - 16
= (x + 1)2 - 16
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
d) a4 + 6a2b + 9b2 - 1
= (a2 + 3b)2 - 1
= (a2 + 3b - 1)(a2 + 3b + 1)
\(B=[-4\left(a+b\right)^3-\left(2a+2b\right)^5]:\left(-3a-3b\right)^2\)
\(=-4\left(a+b\right)^3:[-3\left(a+b\right)]^2-\left(2a+2b\right)^5:[-3\left(a+b\right)]^2\)
\(=-4\left(a+b\right)^3:9\left(a+b\right)^2-32\left(a+b\right)^5:9\left(a+b\right)^2\)
\(=\frac{-4}{9}\left(a+b\right)-\frac{32}{9}\left(a+b\right)^3\)