K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

a/b=b/c=c/d=d/a=(a+b+c+d)/(b+c+d+a)=1

>a=b=c=d>tự tính

21 tháng 2 2018

áp dụng tính chất dãy tỉ số = nhau ta có

a/b=b/c=c/d=d/a=a=b=c=d/b=c=d=a=1

suy ra; M=2a-a/a+a+2a-a/a+a+2a-a.a+a+2a-a/a+a

=a/2a*4=2

Vậy M=2

24 tháng 6 2021

Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:

`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`

`=>a/(2b)=1/2=>a=b`

Tương tự ta có:`b=c,c=d,d=a`

`=>a=b=c=d`

`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)

Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=>a=b=c=d=>\(a+b=\frac{1}{2}\left(a+b+c+d\right)\)

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-b+2b-c+2c-d+2d-a}{a+b}\)

\(=\frac{2\left(a+b+c+d\right)-\left(a+b+c+d\right)}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{a+b+c+d}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{1}{\frac{1}{2}}=2\)

vậy A=2

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(\frac{2a-a}{a+a}.4=\frac{a}{2a}.4=\frac{4a}{2a}=2\)

vậy A=2

4 tháng 10 2015

Ta co : 

a/b = b/c = c/d = d/a = (a+b+c+d)/(b+c+d+a) = 1

=> a = b = c = d

A = (2a-b)/(c+d) + (2b-c)/(d+a) + (2c-d)/(a+b) + (2d-a)/(b+c)

= a/2a + a/2a + a/2a + a/2a = 1/2 + 1/2 + 1/2 + 1/2

= 2

Vậy.......................

nho**** nhe thanks