K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

a/b=b/c=c/d=d/a=(a+b+c+d)/(b+c+d+a)=1

>a=b=c=d>tự tính

21 tháng 2 2018

áp dụng tính chất dãy tỉ số = nhau ta có

a/b=b/c=c/d=d/a=a=b=c=d/b=c=d=a=1

suy ra; M=2a-a/a+a+2a-a/a+a+2a-a.a+a+2a-a/a+a

=a/2a*4=2

Vậy M=2

11 tháng 9 2016

ai giup minh voi

13 tháng 3 2017

khó quá

28 tháng 11 2016

Đề bài: Cho dãy tỉ số bằng nhau:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

Tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

Bài làm

Cùng trừ mỗi tỉ số trên đi 1 đơn vị ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Từ đây ta suy ra 2 trường hợp:

+ Trường hợp 1:

Nếu a + b + c + d \(\notin0\) => a = b = c = d

=> M = 1 + 1 + 1 + 1 = 1 . 4 = 4

+ Trường hợp 2:

Nếu a + b + c + d = 0 thì

_a + b = - ( c + d ) ; b + c = - ( d + a )

_ c + d = - ( a + b ) ; d + a = - ( b + c )

Do đó: M = ( -1 ) + ( - 1 ) + ( - 1 ) + ( - 1) = -4

5 tháng 10 2019

Bạn ơi giải thích cho mình chỗ a+b= -(c+d) được k? Mình vẫn không hiểu lắm!

2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd

↔a+a+b+c+da=a+b+b+c+db=a+b+c+c+dc=a+b+c+d+dd

↔a+b+c+da+1=a+b+c+db+1=a+b+c+dc+1=a+b+c+dd+1

↔a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd

đến đây em xét 2 TH:

a+b+c+d≠0

a+b+c+d=0

__________________

9 tháng 8 2015

Ta có:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2c}{a+b+c+d}=4\)

=>2a+b+c+d=4a

=>2a=b+c+d

Tương tự ta có:2b=a+c+d

2c=a+b+d

2d=a+b+c

=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d

=>a+b=2c+2d

=>a+b/c+d=2

Tương tự ta có:b+c/d+a=2

c+d/a+b=2

d+a/b+c=2

=>M=2+2+2+2=8

9 tháng 8 2015

ban co the giai tuong tan ra ko minh ko hiu

5 tháng 8 2021

\(TH1:a+b+c+d\ne0\)

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(=1+1+1+1\)

\(=4\)

\(TH2:a+b+c+d=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(=-\dfrac{c+d}{c+d}-\dfrac{d+a}{d+a}-\dfrac{a+b}{a+b}-\dfrac{b+c}{b+c}\)

\(=-1-1-1-1\)

\(=-4\)