Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\text{ |}3\sqrt{2}-\sqrt{3\text{ }}\text{ |}=3\sqrt{2}-\sqrt{3}\)\(2.\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{9-2.3\sqrt{5}+5}+\sqrt{9+2.3\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}=\text{ |}3-\sqrt{5}\text{ |}+\text{ |}3+\sqrt{5}\text{ |}=6\)\(3.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2.\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{ |}2\sqrt{2}+\sqrt{5}\text{ |}+\text{ |}2\sqrt{2}-\sqrt{5}\text{ |}=4\sqrt{2}\)\(4.\) Tương tự nhé bạn.
Bn ơi câu 1 cái chỗ dấu bằng thứ 1 ák lm v đc ko
\(\sqrt{21-6\sqrt{6}}=\)\(2.\sqrt{18}\sqrt{3}\)
A = ((20 + 1) . 20 : 2) . 2 = 420
B = (25 + 20) . 6 : 2 = 135
C = ( 33 + 26) . 8 : 2 = 236
D = (1 + 100) .100 : 2 = 5050
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
cau a,b,c thay no co chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)
dang nay co 2 cach
C1: nhanh kho nhin de sai
VD: cau B
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)
B^3=40+3(2)(B)
B^3=40+6B
B=4
C2: hoi dai nhung de nhin
dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)
de thay B=a+b
ab=2
a^3+b^3=40
suy ra B^3=a^3+b^3+3ab(a+b)
B^3=40+6B
B=4
giai tuong tu
con co cach nay nhung it su dung vi kho tim
C3: dua ve tong lap phuong
VD:cau B
\(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)
\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)
de thay
B=4
cau d)
dung CT nay
\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)
ap dung vao bai
\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)
nhanh vao
\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)
Câu b : Ta có : \(\sqrt{13}.\sqrt{15}=\sqrt{\left(14-1\right)}.\sqrt{\left(14+1\right)}=\sqrt{14}^2-1=14-1< 14\)
a: \(\left(\sqrt{18}+3\right)^2=27+18\sqrt{2}\)
\(\left(6+\sqrt{2}\right)^2=38+12\sqrt{2}\)
mà \(27+18\sqrt{2}< 38+12\sqrt{2}\)
nên \(3+\sqrt{18}< 6+\sqrt{2}\)
b: \(14=\sqrt{196}>\sqrt{195}=\sqrt{13\cdot15}\)
\(1,2\sqrt{3}+\sqrt{27}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}=\sqrt{75}>\sqrt{74}\\ 2,\left(3+\sqrt{5}\right)^2=14+6\sqrt{5}\\ \left(2\sqrt{2}+\sqrt{6}\right)^2=14+4\sqrt{3}\\ 6\sqrt{5}=\sqrt{180}>\sqrt{48}=4\sqrt{3}\\ \Rightarrow3+\sqrt{5}>2\sqrt{2}+\sqrt{6}\\ 3,3\sqrt{3}+\sqrt{26}+1>3\sqrt{3}+\sqrt{3}\left(\sqrt{26}>\sqrt{3}\right)\\ \Rightarrow\sqrt{27}+\sqrt{26}+1>4\sqrt{3}=\sqrt{48}\\ 4,\dfrac{1}{\sqrt{15}+\sqrt{14}}< \dfrac{1}{\sqrt{14}+\sqrt{13}}\left(\sqrt{15}+\sqrt{14}>\sqrt{14}+\sqrt{13}\right)\\ \Rightarrow\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)