Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
1.3 Giải phương trình:
a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\))
\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
\(\Leftrightarrow2x=2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}\)(tm)
b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)
\(\Leftrightarrow x=13+6\sqrt{5}\)(tm)
c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))
\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)
\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm)
1.4: Phân tích thành nhân tử:
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
Bài 3:
Xét ΔABC vuông tại A(gt)
=>AB^2+AC^2=BC^2 (theo định lý pytago)
=>BC^2=10^2+15^2=325
=>BC\(\approx18\)(cm)
Có: \(\sin B=\frac{AC}{BC}=\frac{15}{18}=\frac{5}{6}\)
=> \(\widehat{B}=56\)
b) Vì BI là tia phân giác của ^ABC(gt)
=> \(\frac{AB}{BC}=\frac{IA}{IC}\)
hay \(\frac{AB}{AB+BC}=\frac{IA}{IA+IC}\)
=> \(IA=\frac{AB\cdot AC}{AB+BC}=\frac{10\cdot15}{10+18}\approx5,6\)
c) ÁP dụng hệ thức liên quan tới đg cao ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AI^2}=\frac{1}{10^2}+\frac{1}{5,6^2}=\frac{821}{19600}\)
=> \(AH^2=\frac{19600}{821}\Leftrightarrow AH\approx4,9\)
\(3,\\ a,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=12\\ \Leftrightarrow\sqrt{x+5}=4\Leftrightarrow x+5=16\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-5\right|=6\Leftrightarrow\left[{}\begin{matrix}x-5=6\\5-x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)