Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}>2\Leftrightarrow x>4\)
\(5>\sqrt{x}\Leftrightarrow x< 25\)
\(\sqrt{x}< \sqrt{10}\Leftrightarrow x< 10\)( x không âm )
\(\sqrt{3x}< 3\Leftrightarrow3x< 9\Leftrightarrow x< 3\)
\(14\ge7\sqrt{2x}\Leftrightarrow\sqrt{2x}\le2\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
Tham khảo nhé~
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
a/ \(A=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
\("="\Leftrightarrow x=1\)
b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=...\)
c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)
\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)
d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{\frac{4x}{x}}+4=8\)
\("="\Leftrightarrow x^2=4\Rightarrow x=...\)
e/ \(E=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
\("="\Leftrightarrow x+3=5-x\Rightarrow x=...\)
f/ \(F=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow2x+6=5-2x\Leftrightarrow x=...\)
A= [(2√x√x+3)+√x√x+3+3(√xx−9)]:(2√x−2√x−3−11)[(2xx+3)+xx+3+3(xx−9)]:(2x−2x−3−11)với x>= 0 , x #9
a) \(x^2=49\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b: \(\dfrac{x^2+x+2}{x^2-x-2}>=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)>0\)
=>x>2 hoặc x<-1
c: \(\dfrac{3x^2-x-4}{2x^2-x+3}>0\)
\(\Leftrightarrow3x^2-4x+3x-4>0\)
=>(3x-4)(x+1)>0
=>x>4/3 hoặc x<-1
1) \(\left|x\right|< 10\)
\(\Leftrightarrow-10< x< 10\)
2) \(\left|x\right|>11\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -11\\x>11\end{matrix}\right.\)
3) \(\left|x\right|\ge2x\left(\forall x\ge0\right)\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x\le-2x\\x\ge2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\le0\\x\le0\end{matrix}\right.\)
\(\Leftrightarrow x=0\) \(\left(thỏa.đk:x\ge0\right)\)
4) \(\left|x\right|\le-3x\left(\forall x\le0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\left(-3x\right)\\x\le-3x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\le0\\4x\le0\end{matrix}\right.\)
\(\Leftrightarrow x\le0\) \(\left(thỏa.đk\right)\)