Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\ge2\)
b: \(6x-x^2+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left(x-3\right)^2+10\le10\)
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
\(x^3+9x^2+11x-21=0\)
\(\Leftrightarrow x^3+7x^2+2x^2+11x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+2x^2+11x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+x^2+7x+x^2+4x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+x\left(x+7\right)+x^2+4x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+4x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+7x-3x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x\left(7+x\right)-3\left(7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x^2+2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-3\\x=1\end{matrix}\right.\)
cách khác: "định hướng HĐT"
\(\left(x^3+3.3.x^2+3.3^2x+3^3\right)+\left[\left(-27x+11x\right)-27-21\right]=\left(x+3\right)^3-16\left(x+3\right)=0\)\(\left(x+3\right)\left[\left(x+3\right)^2-16\right]=\left(x+3\right)\left[\left(x+3\right)-4\right]\left[\left(x+3\right)+4\right]\)
\(\left(x+3\right)\left(x-1\right)\left(x+7\right)=0\)
\(\left[{}\begin{matrix}x=-3\\x=1\\x=-7\end{matrix}\right.\)
a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)
b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)
c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)
\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)
e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)
a, \(t\left(t+2a^2\right)+a^4=t^2+2a^2t+a^4=\left(a^2+t\right)^2\)
b, \(x^2+3x+2=x^2+2x+x+2=x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
c, \(x^4+5x^3+9x^2+7x+2\)
\(=x^4+x^3+4x^3+4x^2+5x^2+5x+2x+2\)
\(=x^3\left(x+1\right)+4x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x^3+4x^2+5x+2\right)\left(x+1\right)\)
\(=\left(x^3+x^2+3x^2+3x+2x+2\right)\left(x+1\right)\)
\(=\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]\left(x+1\right)\)
\(=\left(x^2+3x+2\right)\left(x+1\right)^2\)
\(=\left(x+2\right)\left(x+1\right)^3\)
\(x^4+2014x^2+2013x+2014\)
\(=x^4+2014x^2+2014x-x+2014\)
\(=\left(x^4-x\right)+\left(2014x^2+2014x+2014\right)\)
\(=x\left(x^3-1\right)+2014\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2014\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2014\right)\)
b)\(x^8+7x^4+6\)
\(=x^8+x^4+6x^4+6\)
\(=x^4\left(x^4+1\right)+6\left(x^4+1\right)\)
\(=\left(x^4+1\right)\left(x^4+6\right)\)
b) \(x^8+7x^4+16\)
\(=\left(x^8+8x^4+16\right)-x^4\)
\(=\left[\left(x^4\right)^2+2.x^4.4+4^2\right]-x^4\)
\(=\left(x^4+4\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+4-x^2\right)\left(x^4+4+x^2\right)\)
a, \(9x^2+6xy+y^2=9x^2+3xy+3xy+y^2\)
\(=\left(9x^2+3xy\right)+\left(3xy+y^2\right)\)
\(=3x.\left(3x+y\right)+y.\left(3x+y\right)\)
\(=\left(3x+y\right)^2\)
b, \(x^4+2x^3+x^2=x^4+x^3+x^3+x^2\)
\(=\left(x^4+x^3\right)+\left(x^3+x^2\right)\)
\(=x^3.\left(x+1\right)+x^2.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^3+x^2\right)=\left(x+1\right).x^2.\left(x+1\right)\)
\(=\left(x+1\right)^2.x^2\)
Chúc bạn học tốt!!!
a)\(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b)\(x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
c)\(5x^2-10xy+5xy^2-5z^2\)
\(=5\left(x^2-2xy+xy^2-z^2\right)\)