K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

đây có vài bài xin chỉ giáo | HOCMAI Forum - Cộng đồng học sinh Việt Nam

3 tháng 8 2016

Có: \(x^2+\frac{1}{4}\ge2\sqrt{x^2.\frac{1}{4}}=x\)(BĐT AM-GM)

Đặt \(A=7a+5b+12ab\)

\(\Rightarrow A\le7\left(a^2+\frac{1}{4}\right)+5\left(b^2+\frac{1}{4}\right)+12ab=7a^2+5b^2+3+12ab\)

\(\Rightarrow A\le\left(9a^2+8ab+7b^2\right)+3-\left(2a^2-4ab+2b^2\right)=9-2\left(a-b\right)^2\le9\)(Vì \(2\left(a-b\right)^2\ge0\)với mọi a,b)

Vậy \(A\le9\)(đpcm) Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)

23 tháng 6 2020

Ta có 

\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)

\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)

                                                                            \(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)

\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)

\(=>=3+\frac{3+3}{2}=6\)

=> dpcm

cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm

23 tháng 6 2020

(a - b)^2 = a^2 - 2ab + b^2 > 0

(b - c)^2 = b^2 - 2bc + c^2 > 0

(c - a)^2 = c^2 - 2ac + a^2 > 0

=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac 

=> 6 > 2ab + 2bc + 2ac

=> 3 > ab + bc + ac    (1)

(a - 1)^2 = a^2 - 2a + 1 > 0

(b - 1)^2 = b^2 - 2b + 1 > 0

(c - 1)^2 = c^2 - 2c + 1 > 0

=>  a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c

=> 6 > 2a + 2b + 2c

=> 3 > a + b + c   và (1)

=> 6 > ab + ac + bc + a + b + c

18 tháng 5 2018

Ta có : \(7a^2+b^2=8ab\)

<=> \(7a^2-7ab+b^2-ab=0\)

<=> \(7a\left(a-b\right)-b\left(a-b\right)=0\)

<=> \(\left(7a-b\right)\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=\frac{b}{7}\\a=b\end{cases}}\)

Với \(a=\frac{b}{7}\) => \(M=1+\frac{b}{\frac{b}{7}}=1+7=8\)

Với a = b => \(M=1+1=2\)

18 tháng 5 2018

Thanks bạn nha!

10 tháng 2 2019

\(5a^2+5b^2+8ab-2a+2b+2=0\)

\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)

\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)

Thay a, b vào B ta được :

\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)

\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(B=-1\)

10 tháng 2 2019

Dòng 2 là \(+2b\)nhé mình bấm lộn :)

8 tháng 2 2017

Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra

\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)

Từ điều kiện \(0\le b,c\le a\le2\). ta có 

\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)

Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).

Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)

Từ (2) và (3). Như vậy đã chứng minh xong

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)

8 tháng 2 2017

Let \(a\ge b\ge c\)

Since \(f\left(x\right)=x^3\)is a convex function on  \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)

By Karamata's inequality we obtain 

\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)

Done!  :)))

P/s:viết tiếng anh giỏi quá =))

NV
3 tháng 6 2020

Với mọi số thực a;b;c ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (1)

Tương tự: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+3\ge2a+2b+2c\) (2)

Cộng vế với vế (1) và (2)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)