K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

a) \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+\left(xy-2y\right)\)

\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+x-2\right)\)

\(=\left(x-2\right)\left(5x-10\right)\)

\(=5\left(x-2\right)^2\)

28 tháng 10 2021

a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)

b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)

c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)

d, không phân tích được

6 tháng 7 2021

a) x4 + x2 - 27x - 9 

= (x4 - 27x) + x2 - 9

= x(x3 - 27) + (x - 3)(x + 3) 

= x(x - 3)(x2 + 3x + 9) + (x - 3)(x + 3) 

= (x - 3)(x3 + 3x2 + 9x + x + 3) 

= (x - 3)(x3 + 3x2 + 10x + 3)

b) x2 - xy - x  + y 

= x(x - y) - (x - y)

= (x - 1)(x - y)

c) xy + 4 - x2 + 2y

= (xy + 2y) - (x2 - 4)

= y(x + 2) - (x - 2)(x + 2) 

= (x + 2)(y - x + 2)

d) xy + y - 2(x + 1)

= y(x + 1) - 2(x + 1)

= (y - 2)(x + 1)

9 tháng 10 2020

a) 36 - 4a2 + 20ab - 25b2 = 36 - ( 4a2 - 20ab + 25b2 ) = 62 - ( 2a - 5b )2 = ( 6 - 2a + 5b )( 6 + 2a - 5b )

b) ( xy + 4 )2 - 4( x + y )= ( xy + 4 )2 - 22( x + y )2 = ( xy + 4 )2 - [ 2( x + y ) ]2 

                                        = ( xy + 4 )2 - ( 2x + 2y )2 = ( xy + 4 - 2x - 2y )( xy + 4 + 2x + 2y )

                                        = [ x( y - 2 ) - 2( y - 2 ) ][ x( y + 2 ) + 2( y + 2 ) ]

                                        = ( y - 2 )( x - 2 )( y + 2 )( x + 2 )

c) x2 + y2 - x2y2 + xy - x - y

= ( x2 - x2y2 ) + ( y2 - y ) + ( xy - x )

= x2( 1 - y2 ) + y( y - 1 ) + x( y - 1 )

= x2( 1 - y )( 1 + y ) - y( 1 - y ) - x( 1 - y )

= ( 1 - y )[ x2( 1 + y ) - y - x ) ]

= ( 1 - y )( x2 + x2y - y - x )

= ( 1 - y )[ ( x2 - x ) + ( x2y - y ) ]

= ( 1 - y )[ x( x - 1 ) + y( x2 - 1 ) ]

= ( 1 - y )[ x( x - 1 ) + y( x - 1 )( x + 1 ) ]

= ( 1 - y )( x - 1 )[ x + y( x + 1 ) ]

= ( 1 - y )( x - 1 )( x + xy + y )

d) 3x + 3y - x2 - 2xy - y2

= 3( x + y ) - ( x2 + 2xy + y2 )

= 3( x + y ) - ( x + y )2

= ( x + y )( 3 - x - y )

e) ( 2xy + 1 )2 - ( 2x + y )2

= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )

= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]

= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]

= ( y - 1 )( 2x - 1 )( y + 1 )( 2x + 1 )

9 tháng 10 2020

a) \(36-4a^2+20ab-25b^2\)

\(=36-\left(4a^2-20ab+25b^2\right)\)

\(=36-\left(2a-5b\right)^2\)

\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)

b) \(\left(xy+4\right)^2-4\left(x+y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(x+2\right)\left(x-2\right)\left(y+2\right)\left(y-2\right)\)

c) \(x^2+y^2-x^2y^2+xy-x-y\)

\(=-\left(x^2y^2-x^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)

\(=-x^2\left(y-1\right)\left(y+1\right)+y\left(y-1\right)+x\left(y-1\right)\)

\(=\left(y-1\right)\left(-x^2y-x^2+y+x\right)\)

\(=\left(1-y\right)\left[\left(x^2y-y\right)+\left(x^2-x\right)\right]\)

\(=\left(1-y\right)\left(x-1\right)\left(xy+y+x\right)\)

10 tháng 12 2018

\(b,x^3+x^2y-xy^2-y^3\)

\(=\left(x^{ }^3+x^2y\right)-\left(xy^2+y^3\right)\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\)

10 tháng 12 2018

\(d,2x^2+xy-y^2\)

\(=2x^2+2xy-xy-y^2\)

\(=x.\left(x+y\right)-y.\left(x+y\right)=\left(x+y\right).\left(2x-1\right)\)

2 tháng 10 2020

a) \(\left(xy+1\right)^2-\left(x+y\right)\)

\(=\left(xy+1-x-y\right)\left(xy+1+x+y\right)\)

\(=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]\)

\(=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

2 tháng 10 2020

b) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

2 tháng 10 2020

a) ( xy + 1 )2 - ( x + y )2

= [ ( xy + 1 ) - ( x + y ) ][ ( xy + 1 ) + ( x + y ) ]

= ( xy - x - y + 1 )( xy + x + y + 1 )

b) ( x + y )3 - ( x - y )3

C1. = x3 + 3x2y + 3xy2 + y3 - ( x3 - 3x2y + 3xy2 - y3 )

      = x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3

      = 6x2y + 2y3

      = 2y( 3x2 + y2 )

C2. = [ ( x + y ) - ( x - y ) ][ ( x + y )2 + ( x + y )( x - y ) + ( x - y )2 ]

      = ( x + y - x + y )( x2 + 2xy + y2 + x2 - y2 + x2 - 2xy + y2 )

      = 2y( 3x2 + y2 )

c) 3x4y2 + 3x3y2 + 3xy2 + 3y2

= 3( x4y2 + x3y2 + xy2 + y2 )

= 3[ ( x4y2 + x3y2 ) + ( xy2 + y2 ) ] 

= 3[ x3y2( x + 1 ) + y2( x + 1 ) ] 

= 3( x + 1 )( x3y2 + y2 )

= 3y2( x + 1 )( x3 + 1 )

= 3y2( x + 1 )( x + 1 )( x2 - x + 1 )

= 3y2( x + 1 )2( x2 - x + 1 )

d) 4( x2 - y2 ) - 8( x - ay ) - 4( a2 - 1 )

= 4[ ( x2 - y2 ) - 2( x - ay ) - ( a2 - 1 )

= 4( x2 - y2 - 2x + 2ay - a2 + 1 )

= 4[ ( x2 - 2x + 1 ) - ( y2 - 2ay + a2 ) ]

= 4[ ( x - 1 )2 - ( y - a )2 ]

= 4[ ( x - 1 ) - ( y - a ) ][ ( x - 1 ) + ( y + a ) ]

= 4( x - y + a - 1 )( x + y + a - 1 )

10 tháng 7 2018

a) xy – 3x + 2y – 6

= (xy - 3x) + (2y - 6)

= x(y - 3) + 2(y - 3)

= (y - 3)(x + 2)

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

d) x3 + 3x2 – 3x – 1

= (x3 - 1) + (3x2 - 3x)

= (x - 1)(x2 + x + z) + 3x(x - 1)

= (x - 1)(x2 + 4x + 1)

10 tháng 7 2018

a ) 

\(xy-3x+2y-6\)

\(=\left(xy+2y\right)-3x-6\)

\(=y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(y-3\right)\left(x+2\right)\)

b ) 

\(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

c ) 

\(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

24 tháng 7 2016

1)\(=x^2\left(x-y\right)-y\left(x-y\right)\\ =\left(x-y\right)\left(x^2-y\right)\)

2)\(=\left(x^2+x\right)-\left(2xy+2y\right)\\ =x\left(x+1\right)-2y\left(x+1\right)\\ =\left(x+1\right)\left(x-2y\right)\)

3)\(=\left(x^2+2.x.2y+4y^2\right)-y^2\\ =\left(x+2y\right)^2-y^2\\ =\left(x+2y+y\right)\left(x+2y-y\right)\)

24 tháng 7 2016

1) x3 - x2y - xy + y2

= (x- x2y) - (xy - y2)

= x2.(x - y) - y.(x - y)

= (x - y).(x2 - y)

2) x2 - 2xy + x - 2y

= (x2 + x) - (2xy + 2y)

= x.(x + 1) - 2y.(x + 1)

= (x + 1).(x - 2y)

3) x2 + 4xy + 3y2

= x2 + 3xy + xy + 3y2

= (x2 + 3xy) + (xy + 3y2)

= x.(x + 3y) + y.(x + 3y)

= (x + 3y).(x + y)

24 tháng 7 2016

1 ) \(x^3-x^2y-xy+y^2\)

\(=\left(x^3-x^2y\right)-\left(xy-y^2\right)\)

\(=x^2.\left(x-y\right)-y.\left(x-y\right)\)

\(=\left(x-y\right).\left(x^2-y\right)\)

2 ) \(x^2-2xy+x-2y\)

\(=\left(x^2+x\right)-\left(2xy+2y\right)\)

\(=x.\left(x+1\right)-2y.\left(x+1\right)\)

\(=\left(x+1\right).\left(x-2y\right)\)

3 ) \(x^2+4xy+3y^2\)

\(=x^2+3xy+xy+3y^2\)

\(=\left(x^2+3xy\right)+\left(xy+3y^2\right)\)

\(=x.\left(x+3y\right)+y.\left(x+3y\right)\)

\(=\left(x+3y\right).\left(x+y\right)\)

25 tháng 7 2016

Sgk trang may vay

23 tháng 10 2016

đề hình như bị sai rồi bạn

23 tháng 10 2016

câu a phải là 3x+3y-x^2-2xy+y^2 chứ