Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2
Vậy EF ≤ (AB+CD)/2
27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.
a) So sánh các độ dài EK và CD, KF và AB.
b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)
Bài giải:
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK =\(\dfrac{CD}{2}\)
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = \(\dfrac{AB}{2}\)
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)
Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)
bài 1
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2= (AB +CD)/2
Vậy EF ≤ (AB +CD)/2
a) + ΔADC có: AE = ED (gt) và AK = KC (gt)
⇒ EK là đường trung bình của ΔADC
⇒ EK = CD/2
+ ΔABC có AK = KC (gt) và BF = FC (gt)
⇒ KF là đường trung bình của ΔABC
⇒ KF = AB/2.
b) Ta có: EF ≤ EK + KF =
(Bổ sung: ⇔ EF = EK + KF ⇔ E, F, K thẳng hàng ⇔ AB // CD)
EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD) kết hợp cả 2 => đpcm
A B C D E F K
a) +)EK là đường trung bình nên EK = 1/2 . CD do đó EK < CD
+) EF và AB thì đang suy nghĩ
b) Ta có: \(EK=\frac{1}{2}CD=\frac{CD}{2}\)(t/c đường trung bình)
Tương tự, ta có \(KF=\frac{1}{2}AB\)
Cộng theo vế hai đẳng thức trên ta được:
\(\frac{AB+CD}{2}=EK+KF\ge EF\) ( theo quy tắc 3 điểm)
Đẳng thức xảy ra khi K thuộc EF, khi đó \(\hept{\begin{cases}EK\text{// }CD\\KF\text{//}AB\end{cases}}\) và K thuộc EF nên suy ra \(\hept{\begin{cases}EF\text{//}CD\\EF\text{//}AB\end{cases}}\Leftrightarrow AB\text{//}CD\)
P/s: Chỗ "đẳng thức xảy ra..." mình không chắc.
c: Ta có: \(EF\le KE+KF\)
\(\Leftrightarrow EF\le\dfrac{DC+AB}{2}\)
Dấu '='xảy ra khi E,K,F thẳng hàng
hay EF//AB//DC
Suy ra: ABCD là hình thang
a) \(\Delta ADC\) có: E là tđ của AD ; K là trung điểm của AC
=> EK là đg tb của \(\Delta ADC\)
=> EK = \(\frac{1}{2}\) CD
\(\Delta ACB\) có: F là tđ của BC ; K là tđ của AC
=> KF là đg tb của \(\Delta ACB\)
=> KF = \(\frac{1}{2}\)AB
b) Ta có: AF \(\le\) EK + KF = \(\frac{1}{2}\)CD + \(\frac{1}{2}\)AB = \(\frac{AB+CD}{2}\)