Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\left(\frac{1}{2}\right)^{225}\)=\(\left(\frac{1}{2}\right)^{9.25}\)=\(\left(\frac{1}{512}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}\)=\(\left(\frac{1}{3}\right)^{4.25}\)=\(\left(\frac{1}{81}\right)^{25}\)
Vì \(\frac{1}{512}\)<\(\frac{1}{81}\) => \(\left(\frac{1}{512}\right)^{25}\)<\(\left(\frac{1}{81}\right)^{25}\)
Hay \(\left(\frac{1}{2}\right)^{225}\)<\(\left(\frac{1}{3}\right)^{100}\)
Mong bạn tích cho mình nhé
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
vì \(\left(\frac{1}{81}\right)^{25}=\left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}=\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrowđpcm\)
a)\(\left(\frac{1}{5}\right)^5\).\(5^5\)=\(\frac{1}{3125}\).3125=1
a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)
\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)
\(x+\frac{1}{2}=x+x+3\\\)
\(x+\frac{1}{2}=x+\left(x+3\right)\)
\(\Rightarrow\frac{1}{2}=x+3\)
\(\Rightarrow x=\frac{1}{2}-3\)
\(\Rightarrow x=-\frac{5}{2}\)
Vậy \(x=-\frac{5}{2}\)
b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)
\(Ta\) \(có\)
\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)
\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)
\(3x+2=4x\)
\(3x+2=3x+x\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
ta có:1/8^100
-1/4^200=(-1/4^2)^100=1/16^100
=>1/8^100 >1/16^100
=>1/8^100 >-1/4^200
=> 6x - 3 - 5 - 15x = 44
=> -9x - 8 = 44
=> -9x = 52
=> x = \(\frac{-52}{9}\)
nhớ
3(2x-1)-5(1+3x)=44
\(\Leftrightarrow\)6x-3-5-15x=44
\(\Leftrightarrow\)-11x=52
\(\Leftrightarrow\)x=-52/11
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}+1\)
\(\Leftrightarrow\frac{20}{x+3}-8=8-\frac{18}{x+3}\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=8+8\)
\(\Leftrightarrow\frac{38}{x+3}=16\)
\(\Leftrightarrow x+3=2,375\)
\(\Leftrightarrow x=-0,625\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\left(\frac{18}{x+3}+1\right)\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}-1\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=7-1+8\)
\(\Leftrightarrow\frac{38}{x+3}=14\)
\(\Leftrightarrow\left(x+3\right)14=38\)
\(\Leftrightarrow14x+42=38\)
\(\Leftrightarrow14x=-4\Leftrightarrow x=-\frac{4}{14}=-\frac{2}{7}\)
Vậy \(x=-\frac{2}{7}\)
Ta có:
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)