K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
Tương tự: \(y^2+\dfrac{1}{y^2}\ge2\)
\(z^2+\dfrac{1}{z^2}\ge2\)
Cộng vế theo vế 3 BĐT cùng chiều trên ta được:
\(x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge6\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{x^2}\\y^2=\dfrac{1}{y^2}\\z^2=\dfrac{1}{z^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\) ( Vì x,y,z nguyên dương )
Vậy các số x,y,z thỏa mãn đề bài là (x;y;z)= ( 1;1;1)

6 tháng 4 2017

Cách khác: Không sử dụng BĐT Cauchy
Pt \(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+\left(z^2+\dfrac{1}{z^2}\right)=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+2+\left(y-\dfrac{1}{y}\right)^2+2+\left(z-\dfrac{1}{z}\right)^2+2=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+\left(z-\dfrac{1}{z}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\\z-\dfrac{1}{z}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)( Vì x,y,z nguyên dương )

19 tháng 8 2017

a) Ta có : \(x - 2xy + y - 3 = 0\)

\(\Rightarrow-2xy+x+y=3\)

\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)

\(\Rightarrow4xy-2x-2y=-6\)

\(\Rightarrow4xy-2x-2y+1=-6+1\)

\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)

\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)

Tự lập bảng đi -.-

26 tháng 3 2018

Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz

+ Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0

+ Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36

+ Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6

+ Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3

+ Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2

- Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2

- Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2

Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)

6 tháng 7 2017

Hỏi đáp Toán

6 tháng 7 2017

\(\dfrac{1}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)

\(\dfrac{1}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)

\(\dfrac{1}{x}=\dfrac{1+2y}{6}\)

\(6=x\left(1+2y\right)\)

Tự làm típ

\(x\left(x+y\right)=\dfrac{1}{48};y\left(x+y\right)=\dfrac{1}{24}\)

\(x^2+xy=\dfrac{1}{48};xy+y^2=\dfrac{1}{24}\)

\(\Rightarrow x^2+xy-y^2-xy=\dfrac{1}{48}-\dfrac{1}{24}\)

\(x^2-y^2=\dfrac{-1}{24}\)

\(\left(x+y\right)\left(x-y\right)=\dfrac{-1}{24}\)(HĐT số 3)

Làm tips

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..

10 tháng 9 2019

a)Ta có: \(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)

\(=\frac{x+y+z}{y+z+1+x+y+2+x+y-3}\)

\(=\frac{x+y+z}{2x+2y+2z}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63