K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

Ta có: M là trung điểm của AB; N là trung điểm Bc 

=> MN là đường trung bình của tam giác BAC 

=> MN//AC => ^MNB = ^ACB => ^MNH = ^ACB 

Xét tam giác AHB  vuông tại H 

có HM là đường trung tuyến AB => HM = 1/2 AB = MB = MA 

=> tam giác BHM cân tại M => ^MBH = ^MHB => ^MHB = ^MBH = ^ABC = 2^ACB 

mà ^MHB = ^HMN + ^MNH => 2^ACB = ^HMN + ^ACB => ^HMN = ^ACB 

=> ^MNH = ^NMH => Tam giác MHN cân

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

18 tháng 9 2016

bài này dễ lắm

câu a bạn tự làm nha vì nó quá dễ rồi

b) Mình xin đính chính lại là P là trung điểm của AB chứ không phải B, bạn viết lộn rùi

Gọi O là giao điểm của PN và AH

Ta có: P là trung điểm của AB (gt)

          BO// BH ( t/c đướng trung bình, đã cm ở câu a)

  => O là trung điểm của AH => AO = OH

Xét tam giác APO và tam giác HPO có:

     BO là cạnh chung

     Góc POH = góc POA = 90 độ ( PN là đướng trung trực của AH )

     AO = HO (cmt)

 => Tam giác APO = tam giác HPO ( c-g-c)

 => Góc OPH = góc OPA ( 2 góc tương ứng) (5)

Ta có: PN là đướng trung bình của tam giác ABC ( cm ở câu a)

   => PN = \(\frac{1}{2}\)BC (1) => PN // BC

  Mà M là trung điểm của BC (gt) => BM = MC = \(\frac{1}{2}\)BC (2)

Từ (1) và (2) => PN = BM = MC hay PN = BM, PN = BM (3)

 Ta lại có: PN//BC => PN//BM (4)

 Từ (3) và ( 4) => PNMB là hình bình bình hành => NM //PB => NM//AP => góc OPA = góc MNP ( cặp góc slt) (6)

Mà PN//HM ( PN//BC, t/c đướng trung bình) => MNPH là hình thang (7)

 Từ(5), (6) và (7) MNPH là hình thang cân

14 tháng 9 2017

BO sao lại sog song với BH