K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

26 tháng 8 2018

Bài 1: 

a, 10 - 4x = 2x - 3

<=> - 4x - 2x = -3 -10

<=> -6x = -13

<=> x =13/6

26 tháng 8 2018

miyano shiho bạn giúp mình nốt mấy bài cuối nha :v

C1: Giải pt sau: (có điều kiện) a) |3-2x|= 4x+1 b) |3-5x| = 2x+1 C2: Cho m < n So sánh 2021 - 13m và 2020 - 13n C3: Cho tam giác ABC vuông tại A, đường cao AH phân giác AD, kẻ DK vuông góc AC (K thuộc AC) a) CM tam giác ABC đồng dạng tam giác HAC b) Giả sử AB= 6cm, AC = 8cm. Tính BD C4: 1 ô tô đi từ A -> B với vận tốc trung bình 60km/h lúc trở về vẫn trên quãng đường đó ô tô đi với vận tốc nhỏ hơn vận tốc lúc đi...
Đọc tiếp
C1: Giải pt sau: (có điều kiện) a) |3-2x|= 4x+1 b) |3-5x| = 2x+1 C2: Cho m < n So sánh 2021 - 13m và 2020 - 13n C3: Cho tam giác ABC vuông tại A, đường cao AH phân giác AD, kẻ DK vuông góc AC (K thuộc AC) a) CM tam giác ABC đồng dạng tam giác HAC b) Giả sử AB= 6cm, AC = 8cm. Tính BD C4: 1 ô tô đi từ A -> B với vận tốc trung bình 60km/h lúc trở về vẫn trên quãng đường đó ô tô đi với vận tốc nhỏ hơn vận tốc lúc đi 20km/h nên thời gian lúc về hết nhiều hơn lúc đi 30 phút. Tính độ dài quãng đường AB C5: Cho tam giác ABC vuông tại A biết AB = 15cm, AC = 20cm. Kẻ AH vuông góc BC tại H a) CM: tam giác HBA đồng dạng tam giác ABC b) Vẽ tia phân giác của góc BAH cắt BH tại D c) Trên HC lấy điểm E sao cho HE = HA qua E vẽ đường thẳng vuông góc với BC và cắt AC tại M và qua C vẽ đường thẳng vuông góc với BC cắt theo phân giác của góc MEC tại F. CM: 3 điểm H ,M,F thẳng hàng C6: 1 xe máy khởi hành từ A -> B với vận tốc 35km/h. Sau đó 24 phút trên cùng tuyến đường đó. 1 ô tô xuất phát từ B về A với vận tốc trung bình 45km/h. Biết quãng đường AB dài 142km. Hỏi sau bao lâu kể từ lúc xe máy khởi hành 2 xe gặp nhau? plzz
4
23 tháng 4 2021

Câu 1 : 

a, \(\left|3-2x\right|=4x+1\)

Với \(x\le\frac{3}{2}\)pt có dạng : \(3-2x=4x+1\Leftrightarrow-6x=-2\Leftrightarrow x=\frac{1}{3}\)( tm )

Với \(x>\frac{3}{2}\)pt có dạng : \(3-2x=-4x-1\Leftrightarrow2x=-4\Leftrightarrow x=-2\)( ktm )

Vậy tập nghiệm của phương trình là S = { 1/ } 

b, \(\left|3-5x\right|=2x+1\)

Với \(x\le\frac{3}{5}\)pt có dạng : \(3-5x=2x+1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)( tm )

Với \(x>\frac{3}{5}\)pt có dạng : \(3-5x=-2x-1\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)( tm )

Vậy tập nghiệm của phương trình là S = { 2/7 ; 4/3 } 

23 tháng 4 2021

Câu 2 : 

\(2021-13m\)và \(2020-13n\)

Ta có : \(m< n\Rightarrow-13m>-13n\Leftrightarrow-13n+2021>-13n+2020\)

Bài 1: Giải các phương trình saua) 7 + 2x = 32 – 3x                   b) 3x +1 = 7x -11c) 8x – 3 = 5x + 12                   d) 4(3x – 2 ) – 3( x – 4 ) = 7x + 10Bài 2: Giải các phương trình saua) (x – 7)(2x + 8) = 0 bai2bc ) 3x. (x – 2) – 5x + 10 = 0                d) (x+2)(3-4x)+(x2+4x+4)=0Bài 3: Giải các phương trình sauBài 4: Một người đi xe máy từ A đến B với vận tốc trung bình 40 km/h. Lúc về người...
Đọc tiếp

Bài 1: Giải các phương trình sau

a) 7 + 2x = 32 – 3x                   b) 3x +1 = 7x -11

c) 8x – 3 = 5x + 12                   d) 4(3x – 2 ) – 3( x – 4 ) = 7x + 10

Bài 2: Giải các phương trình sau

a) (x – 7)(2x + 8) = 0 bai2b

c ) 3x. (x – 2) – 5x + 10 = 0                d) (x+2)(3-4x)+(x2+4x+4)=0

Bài 3: Giải các phương trình sau

Bài 4: Một người đi xe máy từ A đến B với vận tốc trung bình 40 km/h. Lúc về người ấy đi với vận tốc  trung bình 30km/h, biết rằng thời gian cả đi lẫn về hết 3giờ 30 phút. Tính quãng đường AB.

Bài 5: Lúc 8 giờ, một xe máy khởi hành từ địa điểm A đến địa điểm B với vận tốc 35km/h. Sau đó 24 phút, trên cùng tuyến đường đó, một ô tô xuất phát từ B đi đến A với vận tốc 45km/h. Biết quãng đường AB dài 90km. Hỏi hai xe gặp nhau lúc mấy giờ?

Bài 6: Cho hình bình hành ABCD có ∠A = ∠D =90o và DC = 2.AB. Biết đáy nhỏ bằng chiều cao của hình thang và bằng 4cm.Tính diện tích hình thang ABCD.

Bài 7: Cho tam giác ABC có AB = 12cm, AC = 20cm, BC = 28cm. Đường phân giác của góc A cắt BC tại D.

a) Tính độ dài các đoạn thẳng BD, DC.

b) Vẽ DE//BC (E ∈AC). Tính DE

c) Cho biết d ện tích tam giác ABC là 98 cm2 . Tính diện tích các tam giác ABD, ADE.

Bài 8:Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm và tam giác DEF vuông tại D có DE = 9cm, DF = 15cm.

a) Hai tam giác ABC và DEF có đồng dạng không? Vì sao?

b) Tính tỉ số chu vi của hai tam giác ấy?

0
Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

Câu 1.a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì...
Đọc tiếp

Câu 1.

a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1

Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định lúc đầu.

Câu 3. Cho ABC vuông cân tại A. Trên AB lấy điểm M, kẻ BD CM, BD cắt CA ở E. Chứng minh rằng:

a) BE . DE = AE . CE

b) BD . BE + AC . EC = BC^2

c) góc ADE = 45 độ

Câu 4. Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh căn 3 và góc BAD= 60 độ . Đường thẳng qua B và giao điểm O của hai cạnh đường chéo hình thoi ABCD vuông góc mặt phẳng (ABCD). Biết BB’ = căn 3 . Tính thể tích hình hộp chữ nhật.

Câu 5. Cho x,y,z là các số thực thỏa mãn 2(y^2+yz+z^2)+3x^2=36 . Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x+y+z

1

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)

\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

3
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải