K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Xét tam giác $MIA$ và $CIB$ có:

\(\left\{\begin{matrix} \widehat{MIA}=\widehat{CIB}(\text{đối đỉnh})\\ MI=CI\\ IA=IB\end{matrix}\right.\Rightarrow \triangle MIA=\triangle CIB(c.g.c)\)

\(\Rightarrow \widehat{MAI}=\widehat{CBI}\Leftrightarrow \widehat{MAB}=\widehat{ABC}\)

Tương tự:

\(\triangle NKA=\triangle BKC(c.g.c)\Rightarrow \widehat{NAK}=\widehat{BCK}\Leftrightarrow \widehat{NAC}=\widehat{ACB}\)

Do đó: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\)

(Theo định lý về tổng ba góc trong tam giác)

b) Vì \(\triangle MIA=\triangle CIB\Rightarrow MA=CB\)

\(\triangle NKA=\triangle BKC\Rightarrow NA=BC\)

Do đó \(MA=NA\)

Theo phần a cũng có \(\widehat{MAI}=\widehat{CBI}\) mà hai góc đó nằm ở vị trí so le trong nên \(MA\parallel BC\). Tương tự \(NA\parallel BC\)

Khi đó \(AH\perp BC\Leftrightarrow AH\perp MA, NA\Rightarrow \widehat{MAH}=\widehat{NAH}=90^0\)

Tam giác $MAH$ và $NAH$ có: \(\left\{\begin{matrix} \widehat{MAH}=\widehat{NAH}\\ \text{ AH chung}\\ MA=NA\end{matrix}\right.\)

\(\Rightarrow \triangle MAH=\triangle NAH(c.g.c)\Rightarrow MH=NH\)

Do đó tam giác $MHN$ cân tại $H$

21 tháng 2 2020

khó quá  nhỉ bạn

22 tháng 2 2020

a) Xet tam giac ABD va tam giac CMD co:
AD = DC 
goc ADB = goc CMD (doi dinh)
DB = DM (gt)
Vay tam giac ABD = tg CMD (c.g.c)
=> AB = CM (2 canh tuong ung)
=> Tam giac ABD = tg CMD
=> Goc BAC = goc  MCA  ( 2 goc tuong ung)
dpcm.
b) Xet tg AMD va BCD co:
AD = DC
Goc ADM = goc ADC ( doi dinh)
DM = DB (gt)
Vay tg AMD = tg BCD (c.g.c)
=> goc MAD = goc DCB ( hai goc tuong ung)
Ma hai goc nay vi tri so le
=> AM//BC 
dpcm.
c) Xet tam giac ABC = AMC
AC se la canh chung
=> AB = CM 
=>AM = BC
=> Tam giac ABC = tg AMC
d) Cau cuoi tao sap chet roi :((((
Ta co: AM = CM
Ma I la trung diem AB ( nhin vao hinh)
K la trung diem CM
=> AI = IB =MK = KC
Xet tam giac IAD va tg KCD co
AI = CK
goc BAC = goc MCA
AD = DC
=> Tm giac IDA = goc KDC ( 2 goc tuong ung)
Ta co: 
góc ADM+MDk+KDC=180 độ
=> goc ADM + MDK + IDA  = 180 do
=< K,D,I thang hang

Xét tứ giác ABCN có

E là trung điểm chung của AC và BN

nên ABCN là hình bình hành

=>AN//BC

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết