Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.
a) Xét \(\Delta AFH\)và \(\Delta ADB\)có:
\(\widehat{AFH}=\widehat{ADB}=90^0\)
\(\widehat{BAD}\) chung
suy ra: \(\Delta AFH~\Delta ADB\)(g.g)
b) Xét \(\Delta AFC\)và \(\Delta AEB\)có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) chung
suy ra: \(\Delta AFC~\Delta AEB\)
c) \(\Delta AFC~\Delta AEB\)
\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AF.AB=AE.AC\)
d) \(\frac{AF}{AE}=\frac{AC}{AB}\)(cmt) \(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\) và \(\Delta ABC\)có:
\(\widehat{BAC}\) chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
suy ra: \(\Delta AEF~\Delta ABC\)
a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (1).
Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (2).
Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)
#muon roi ma sao con
A B C D F E G
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
A B C D E F H 3 6
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)
a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE