Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AFH\)và \(\Delta ADB\)có:
\(\widehat{AFH}=\widehat{ADB}=90^0\)
\(\widehat{BAD}\) chung
suy ra: \(\Delta AFH~\Delta ADB\)(g.g)
b) Xét \(\Delta AFC\)và \(\Delta AEB\)có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) chung
suy ra: \(\Delta AFC~\Delta AEB\)
c) \(\Delta AFC~\Delta AEB\)
\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AF.AB=AE.AC\)
d) \(\frac{AF}{AE}=\frac{AC}{AB}\)(cmt) \(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\) và \(\Delta ABC\)có:
\(\widehat{BAC}\) chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
suy ra: \(\Delta AEF~\Delta ABC\)
Ban kham khảo thử nhé:
a) Xet tâm giac AEB va tam giác AFC:
- goc E= goc F
- A là goc chung
Vay tam giác AEB đồng dang vs tam giác AFC(gg)
=> AE/AF=AB/AC
Xét tam giác AEF va tam giác ACB:
- A là góc chung
-AE/AF=AB/AC ( cmt)
Vay tam giác AEF dong dạng vs tam giác ACB
b) Ta có:AE/AF=AB/AC
<=>AE/AB=AF/AC
=>AE/AB= 3/6=1/2
Suy ra: K= 1/2
Hay: AB/ AE= 2/1
=> S tam giác ABC/ S tam giác AEF= K^2
Nên S tam giác ABC/ S tam giác AEF= (2/1)^2=4
Vay S tam giác ABC= 4 S tam giác AEF
#muon roi ma sao con
A B C D F E G
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
A B C D E F H 3 6
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
DO đo: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
DO đó: ΔAEF\(\sim\)ΔABC
c: Xét ΔMFB và ΔMCE có
góc MFB=góc MCE
góc FMB chung
Do đó:ΔMFB\(\sim\)ΔMCE
Suy ra: MF/MC=MB/ME
hay \(MF\cdot ME=MB\cdot MC\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.