Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
a, Vì mẫu số không thể bằng 0 nên để A là phân số thì n - 2 khác 0
=> n khác 2
Vậy n thuộc {...; -1; 0; 1; 3;...}
b, Để A là số nguyên thì 3 phải chia hết cho n - 2
=> n - 2 thuộc {-1; 1; -3; 3}
=> n thuộc {1; 3; -1; 5}
Vậy...
ta co de 3/n-2 la so nguyen thi =) 3 chia het cho n-2 =) n-2=(+1;+3)
=) n = 1;-1;3;5
=) de A la p/s thi n khac 1;-1;3;5
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
a, B là phân số <=> n-3 thuộc Z và n-3 khác 0 => n khác 0 + 3 => n khác 3
Vậy n thuộc Z và n khác 3 thì B là phân số.
b,B là số nguyên <=> 2 chia hết cho (n-3)
=> n-3 thuộc Ư(2)Ư
Mà Ư(2)= {1; -1; 2; -2}
=> n-3 thuộc {1; -1; 2; -2}
=> n thuộc { 4; 2; 5; 1}
Vậy n thuộc { 4; 2; 5; 1} thì B là số nguyên
Nhớ k cho mình nha^^
a) ĐK : \(n\ne3\) (n khác 3)
b) Để B là một số nguyên thì \(\frac{2}{n-3}\) là một số nguyên => n - 3 \(\in\) Ư(2)
mà Ư(2) = {-2;-1;1;2}
Ta có bảng sau:
n-3 | -2 | -1 | 1 | 2 |
n | 1 | 2 | 4 | 5 |
Tất cả các giá trị trên của n đều là số nguyên.
Vậy B nguyên khi n \(\in\) {1;2;4;5}
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3+4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
c: Thay x=-1/2 vào A, ta được:
\(A=\dfrac{-\dfrac{1}{2}+1}{-\dfrac{1}{2}-3}=\dfrac{1}{2}:\dfrac{-7}{2}=-\dfrac{1}{7}\)
a) Để B là phân số
\(\Rightarrow\)n - 3 \(\ne\)0
\(\Rightarrow\)n\(\ne\)3.
b) Để B là số nguyên
\(\Rightarrow\frac{n+3}{n-3}=\frac{\left(n-3\right)+6}{n-3}\Rightarrow n-3\inư\left(6\right)\)
\(\Rightarrow n-3\in\left(\pm1;\pm2;\pm3;\pm6\right)\)
\(\Rightarrow\)+ \(n-3=1\Rightarrow n=4\).
+\(n-3=-1\Rightarrow n=2\).
+\(n-3=2\Rightarrow n=5\).
+\(n-3=-2\Rightarrow n=1\).
+\(n-3=3\Rightarrow n=6\).
+\(n-3=-3\Rightarrow n=0\).
+\(n-3=6\Rightarrow n=9\).
+\(n-3=-6\Rightarrow n=-3.\)