Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đó: ΔHAC\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)
a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao
AB^2 + AC^2 = BC^2
=> BC^2 = 36 + 64 = 100 => BC = 10 cm
Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
mà DC = BC - BD = 10 - BD
hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm
=> DC = 10 - BD = 10 - 30/7 = 40/7 cm
b, Xét tam giác ABC và tam giác AHB ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác AHB ( g.g )
Hình bạn tự vẽ nhé...
a)
Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
c)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
AH/AC= AB/BC
=> AH/16=12/20
=> AH = 9,6 cm.
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
A B C H 12cm 16cm I D
a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)
a.
Xét hai tam giác MNP và MQP có:
\(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\\MP\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta MNP=\Delta MQP\left(c.c.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{NMP}=\widehat{QMP}\\\widehat{NPM}=\widehat{QPM}\end{matrix}\right.\) hay MP là phân giác của góc M và P
b.
Do \(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\end{matrix}\right.\) \(\Rightarrow MP\) là trung trực NQ
\(\Rightarrow MP\perp NQ\) (đpcm)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=20/7
=>DB=60/3cm; DC=80/7cm
b: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
c: HC=16^2/20=256/20=12,8cm