Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4.7+7.10+10.13+...+205.208
A.9=4.7.9+7.10.9+10.13.9+...+205.208.9
A.9=4.7.(10-1)+7.10.(13-4)+...+205.208.(211-202)
A.9=4.7.10-1.4.7+7.10.13-4.7.10+...+205.208.211-202.205.208
A.9=-1.4.7+205.208.211
A.9=8997012
A=8997012:9=999668
A=6/4.7+6/7.10+6/10.13+...+6/73.76
\(=2.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{76}\right)=2.\frac{9}{38}=\frac{9}{19}\)
a: \(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}=\dfrac{1}{3}-\dfrac{1}{203}=\dfrac{200}{609}\)
b: \(B=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=\dfrac{1}{4}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)
Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)
1/4-1/7 = 3/28 = 3.(1/4.7)
A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)
A = 3.(1-1/100)
A = 3.(99/100)
A = 297/100
\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}\)
\(A=\frac{33}{100}\)
a/ \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=> \(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=> \(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
=> \(A=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)
b/ \(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
=> \(B=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2021}-\dfrac{1}{2024}=\dfrac{1}{4}-\dfrac{1}{2024}=\dfrac{505}{2024}\)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{1}{2021.2024}\)
=\(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{1}{2021}-\)\(\dfrac{1}{2024}\)
=\(\dfrac{1}{4}-\dfrac{1}{2024}\)
=\(\dfrac{505}{2024}\)
a) 1x( 1+3) ; 4x( 4+3) ; 7 x ( 7+3) ; 10 x ( 10 +3) ; ,,,,,,,,
b)1720
st1 = 1.4 = [ 3.(1-1) + 1].[3.(1-1) + 4]
st2 = 4.7 = [3.(2-1) + 1].[3.(2-1) + 4]
st3 = 7.10 = [3.(3-1) + 1].[3.(3-1) + 4]
..........................................................
stn = [3.(n - 1) + 1].(3.(n - 1) + 4]
stn = (3n - 2).(3n + 1)
số hạng thứ 15 của dãy số trên là:
(3.15 - 2).(3.15 + 1) = 43.46 = 1978
\(A=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{6}{28}=\dfrac{2}{28}=\dfrac{1}{14}\)
`3A = 3/(4.7) + 3/(7.10) + .. + 3/(25.28)`
`3A = 1/4 - 1/7 + 1/7 - 1/10 +... + 1/25 - 1/28`
`3A = 3/14`
`A = 1/14.`