Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4
Đặt x/2=y/3=z/4=k
=>x=2k; y=3k; z=4k
\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)
Câu 1:
Ta có: \(\left[\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{65.68}\right]x-\dfrac{7}{34}=\dfrac{19}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{65.68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\dfrac{11}{68}x=\dfrac{33}{68}\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
1. Tìm x thuộc N:
\(\left(x-3\right)^6=\left(x-3\right)^7\)
\(\Leftrightarrow\left(x-3\right)^6-\left(x-3\right)^7=0\)
\(\Leftrightarrow\left(x-3\right)^6.\text{[}1-\left(x-3\right)\text{]}=0\)
\(\Leftrightarrow\left(x-3\right)^6.\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)(thỏa mãn \(x\in N\))
2.
Ta có: 6x=4y=3z
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)
\(=\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.4=12\end{matrix}\right.\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
Bài 1:
a: \(M=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)
b: \(N=\left(\dfrac{-3}{4}+\dfrac{5}{13}\right)\cdot\dfrac{7}{2}-\left(\dfrac{9}{4}+\dfrac{8}{13}\right)\cdot\dfrac{7}{2}\)
\(=\dfrac{7}{2}\left(-\dfrac{3}{4}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right)\)
\(=\dfrac{7}{2}\cdot\left(-3-\dfrac{3}{13}\right)=\dfrac{7}{2}\cdot\dfrac{-42}{13}=\dfrac{-147}{13}\)