Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=3x-7\\x+2=-3x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=-2-7\\x+3x=-2+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Mấy câu kia tương tự.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left(x+2-3x+7\right)\left(x+2+3x-7\right)=0\)
\(\Leftrightarrow\left(-2x+9\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+9=0\\4x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9}{-2}=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{9}{2}\) hoặc \(x=\dfrac{5}{4}\)
b) lộn đề à
c) \(25\left(x-3\right)^2-49\left(2x+1\right)^2=0\)
\(\Leftrightarrow5^2\left(x-3\right)^2-7^2\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[5\left(x-3\right)\right]^2-\left[7\left(2x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(5x-15\right)^2-\left(14x+7\right)^2=0\)
\(\Leftrightarrow\left(5x-15-14x-7\right)\left(5x-15+14x+7\right)=0\)
\(\Leftrightarrow\left(-9x-22\right)\left(19x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x-22=0\\19x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x=22\\19x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{22}{-9}=\dfrac{-22}{9}\\x=\dfrac{8}{19}\end{matrix}\right.\)
Vậy \(x=\dfrac{-22}{9}\) hoặc \(x=\dfrac{8}{19}\)
d) \(9\left(3x-2\right)^2=121\left(1-4x\right)^2\)
\(\Leftrightarrow9\left(3x-2\right)^2-121\left(1-4x\right)^2=0\)
\(\Leftrightarrow3^2\left(3x-2\right)^2-11^2\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left[3\left(3x-2\right)\right]^2-\left[11\left(1-4x\right)\right]^2=0\)
\(\Leftrightarrow\left(9x-6\right)^2-\left(11-44x\right)^2=0\)
\(\Leftrightarrow\left(9x-6-11+44x\right)\left(9x-6+11-44x\right)=0\)
\(\Leftrightarrow\left(53x-17\right)\left(-35x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53x-17=0\\-35x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}53x=17\\-35x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{53}\\x=\dfrac{-5}{-35}=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(x=\dfrac{17}{53}\) hoặc \(x=\dfrac{1}{7}\)
a) \(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=1-x\\2x+1=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b) \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c) \(\left|2x-3\right|-\left|3x+2\right|=0\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d) \(\left|2+3\right|=\left|4x-3\right|\Leftrightarrow\left|4x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}4x-3=5\\4x-3=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=8\\4x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
e) \(\left|\frac{5}{4}-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\Leftrightarrow\left|\frac{5}{8}x+\frac{3}{5}\right|=\frac{9}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{3}{5}=\frac{9}{4}\\\frac{5}{8}x+\frac{3}{5}=-\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{33}{20}\\\frac{5}{8}x=-\frac{57}{20}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{66}{25}\\x=-\frac{114}{25}\end{cases}}\)
\(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=-x+1\\2x+1=x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+1\\2x-x=-1-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c. \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=3+2\\2x+3x=3-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\5x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d, e tương tự
c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |