Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)
B C A D K M Q
Xét tam giác ABC có A = 90*
=> BC2 = AB2 + AC2
=> AC2 = BC2 - AB2
=> AC2 = 102 - 62
=> AC2 = 64
\(\Rightarrow AC^2=\sqrt{64}=8\)
Vậy AC = 8cm
b) K là trung điểm của BC => DK là trung tuyến
A là trung điểm của BD => CA là trung tuyến
mà DK giao CA tại M
=> M là trọng tam tam giác BDC ( 1 )
=> CM \(=\frac{2}{3}AC\)
=> CM = \(\frac{16}{3}cm\)
c) Đề bài phải là trung tuyến AC nhá
Trong tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\) cạnh huyền
=> Q là trung điểm của BC
=> BQ là trung tuyến của tam giác BDC ( 2 )
Từ ( 1 ) và ( 2 ) => 3 điểm B , M , Q thẳng hàng
ABCI
a) Xét tam giác ABC và tam giác DMC có :
BC = CM ( GT )
Góc ACB = góc MCD ( 2 góc đối đỉnh (
AC = CD ( GT )
=> tam giác ABC = tam giác DMC ( c - g - c )
b) Theo ý a , ta có : tam giác ABC = tam giác DMC
=> Góc BAD = góc ADM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> MD // AB ( dấu hiệu )
c) Nghĩ nốt đã
Mình không làm đại, giúp bạn hình nhé :)
A B C D K I
a) \(\Delta ABC\perp A\Rightarrow\widehat{A}=90^0\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=30^0\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\Rightarrow AB< AC< BC\)
b) Xét \(\Delta\) vuông BAD và tam giác vuông BKD có:
\(\widehat{KBD}=\widehat{DBA}\)
BD chung
\(\Rightarrow\Delta BAD=\Delta BKD\) (cạnh huyền- góc nhọn)
Vậy................
c) Ở câu a ta tính được \(\widehat{C}=30^0\)
Ta có BD là pg góc B \(\Rightarrow\widehat{CBD}=\dfrac{60^0}{2}=30^0\)
Ta thấy \(\widehat{C}=\widehat{CBD}=30^0\)
\(\Rightarrow\Delta BDC\) cân tại D
Ta lại có tính chất đường cao trong tam giác cân thì đồng thời là trung tuyến
\(\Rightarrow BK=CK\)
=> K là trung điểm của BC
cm ơn bn