K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019


ABCI

a) Xét tam giác ABC và tam giác DMC có :

BC = CM ( GT )

Góc ACB = góc MCD ( 2 góc đối đỉnh (

AC = CD ( GT )

=> tam giác ABC = tam giác DMC ( c - g - c )

b) Theo ý a , ta có : tam giác ABC = tam giác DMC

=> Góc BAD = góc ADM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

=> MD // AB ( dấu hiệu )

c) Nghĩ nốt đã

25 tháng 11 2019

Ảnh đẹp thì

11 tháng 5 2020

C A B M D I N

Xét tg ACB và tg DCM có :

MCD^ = BCA^ ( đối đỉnh )

AC = DC ( gt )

BC = MC ( gt )

=> tg ACB = tg DMC ( c-g-c )

Từ trên ta có : CMD^ = CBA^ ( góc tương ứng )

Do 2 góc này bằng nhau và ở vị trí sole trong 

Nên MD // AB 

Xét tg CIB và tg CNM có :

ICB^ = NCM^ ( đối đỉnh )

CB = CM ( gt )

CBI^ = CMN^ (cmt)

=> tg CIB = tg CNM ( g-c-g )

=> IB = NM ( cạnh tương ứng ) (1)

Ta có : MN = AB ( cmt ) (2)

Mà do ND = MD - MN (3)

AI = AB - BI (4)

Từ 1 ; 2 ; 3 và 4 => ND = AI  

18 tháng 1 2022

Answer:

A M N D B I O

a. Xét tam giác ABC và tam giác DMC

CA = CD

CB = CM

Góc ACB = góc DCM

=> Tam giác ABC = tam giác DMC (c.g.c)

b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM

Mà  hai góc ở vị trí so le trong

=> AB//MB

c. bạn thông cảm, ý này mình không biết làm ^^.

25 tháng 11 2017

A B C M D k H K 1 2 1 2

a)XÉT TAM GIÁC ABM VÀ CDM

TA CÓ :\(\) AM=MC(vì là trung điểm của AC)

BM=DM (vì là tia đối)

AB=CD

\(\Rightarrow\)\(\Delta ABM=\Delta CDM\)(1)

b)vì \(\Delta ABM=\Delta CDM\) nên góc B=góc C(góc tương ứng)

\(\Rightarrow\)B=C(SO LE TRONG)\(\Rightarrow\)AB//CD(2)

c)xét \(\Delta ABKvà\Delta\)AMK có : K1=K2(VÌ LÀ GÓC XEN GIỮA)

AK CHUNG

BK=MK(VÌ AM=MB)(3)

XÉT \(\Delta HMCvà\Delta HDC\) có: H1=H2(VÌ LÀ GÓC XEN GIỮA)

HC CHUNG

MC=DC(VÌ MD= MC)(4)

TỪ 1234 TA CÓ : VÌ TAM GIÁC ABM=CDMVÀTỪ 3 VÀ 4;BM=MD\(\Rightarrow\)BK=HD

25 tháng 11 2017

nhớ tick đúng cho mình với

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

20 tháng 2 2019

a) Xét tam giác ABC và tam giác MNC ta có:

MC=AC ( gt)

BC=NC (gt)

góc NCM = góc BCA ( 2 góc đối đỉnh )

=> tam giác ABC = tam giác MNC ( c.g.c)

b) => góc BAC = góc NMC ( 2 góc tương ứng )

<=> góc NMC=90 độ ( góc BAC=90 độ )

<=> \(AM\perp MN\)

đpcm

c) Tạo hình: gọi D là giao điểm của CE và MN

Có tam giác ABC = tam giác MNC 

=> góc EBC= góc DNC ( 2 góc tương ứng )

Tự c/m: tam giác NDC = tam giác BEC ( g.c.g)

=> ND=BE         ( 2  cạnh tương ứng )

    tam giác AEC = tam giác MDC (  c.g.c )

=> MD=AE ( 2 cạnh tương ứng )

Lại có: AE=BE ( gt )

=> ND=MD 

=> D là trung điểm của MN

=> CE đi qua trung điểm MN 

                         đpcm

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

12 tháng 1 2018

A I B C M N D

a) Xét \(\Delta ABC;\Delta DMC\) có :

\(BC=CM\left(gt\right)\)

\(\widehat{ACB}=\widehat{DCM}\) (đối đỉnh)

\(AC=CD\left(gt\right)\)

=> \(\Delta ABC=\Delta DMC\left(c.g.c\right)\)

b) Từ \(\Delta ABC=\Delta DMC\) (cmt - câu a)

=> \(\widehat{BAC}=\widehat{MDC}\) (2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> \(\text{MD // AB}\left(đpcm\right)\)

c) Xét \(\Delta BIC;\Delta MNC\) có :

\(\widehat{BCI}=\widehat{MCN}\) (đối đỉnh)

\(BC=CM\left(gt\right)\)

\(\widehat{CBI}=\widehat{NMC}\left(slt\right)\)

=> \(\Delta BIC=\Delta MNC\left(g.c.g\right)\)

=> \(BI=NM\) (2 góc tương ứng)

Xét \(\Delta AIC;\Delta DNC\) có :

\(AC=CD\left(gt\right)\)

\(\widehat{ACI}=\widehat{DCN}\left(slt\right)\)

\(IC=CN\left(\Delta BIC=\Delta MNC-cmt\right)\)

=> \(\Delta AIC=\Delta DNC\left(c.g.c\right)\)

=> \(IA=ND\) (2 cạnh tương ứng)