K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Bài 1:

a ) \(Q=\dfrac{3}{2}x^2+x+1=\dfrac{3}{2}\left(x^2+\dfrac{2}{3}x+\dfrac{2}{3}\right)=\dfrac{3}{2}\left(x^2+\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{5}{9}\right)=\dfrac{3}{2}\left[\left(x+\dfrac{1}{3}\right)^2+\dfrac{5}{9}\right]=\dfrac{3}{2}\left(x+\dfrac{1}{3}\right)^2+\dfrac{5}{6}\ge\dfrac{5}{6}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy Min Q là : \(\dfrac{5}{6}\Leftrightarrow x=-\dfrac{1}{3}\)

b ) \(R=x^2+2y^2+2xy-2y=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy Min R là : \(-1\Leftrightarrow x=-1;y=1\)

Bài 2 :

a ) \(Q=2x-2-3x^2\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{2}{3}\right)\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{5}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{5}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{5}{3}\le-\dfrac{5}{3}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy Max Q là : \(-\dfrac{5}{3}\Leftrightarrow x=\dfrac{1}{3}\)

b ) \(2-x^2-y^2-2\left(x+y\right)\)

\(=2-x^2-y^2-2x-2y\)

\(=-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+4\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+4\le4\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=-1\)

Vậy Max của b/t trên là : \(4\Leftrightarrow x=-1\)

c ) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=-1\)

Vậy Max của b/t trên là : \(9\Leftrightarrow x=y=-1\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2