Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz ta có:
\(B=\dfrac{1}{2-x}+\dfrac{1}{x}\ge\dfrac{\left(1+1\right)^2}{2-x+x}=\dfrac{4}{2}=2\)
Dấu "=" xảy ra khi: \(x=1\)
p/s Mình nghĩ đề phải là \(0< x\le1\) nhé
áp dụng bunhia
\(\left[\left(\sqrt{\dfrac{2}{1-x}}\right)^2+\left(\sqrt{\dfrac{1}{x}}\right)^2\right]\left[\left(\sqrt{1-x}\right)^2+\left(\sqrt{x}\right)^2\right]\)
\(\ge\left(\sqrt{\dfrac{2}{1-x}}.\sqrt{1-x}+\sqrt{\dfrac{1}{x}}.\sqrt{x}\right)^2\)
\(\Leftrightarrow\left(\dfrac{2}{1-x}+\dfrac{1}{x}\right)\left(1\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\)
\(\Rightarrow B\ge\left(\sqrt{2}+1\right)^2\)
dấu = xảy ra khi \(\dfrac{\dfrac{2}{1-x}}{1-x}=\dfrac{\dfrac{1}{x}}{x}\Leftrightarrow x=\sqrt{2-1}\)
Ta thấy:
\(\sqrt{\dfrac{1-y}{y}}\times\sqrt{\dfrac{y}{1-y}}=1\left(const\right)\)
=> Ta có thể đặt \(\sqrt{\dfrac{1-y}{y}}=t\left(t\ge0\right)\)
\(\Rightarrow\sqrt{\dfrac{y}{1-y}}=\dfrac{1}{t}\)
~ ~ ~
\(\sqrt{\dfrac{1-y}{y}}=t\)
\(\Rightarrow\dfrac{1-y}{y}=t^2\)
\(\Leftrightarrow1-y=yt^2\)
\(\Leftrightarrow yt^2+y=1\)
\(\Leftrightarrow y\left(t^2+1\right)=1\)
\(\Leftrightarrow y=\dfrac{1}{t^2+1}\)
~ ~ ~
\(x=\dfrac{1}{2}\left(t-\dfrac{1}{t}\right)=\dfrac{t^2-1}{2t}\)
\(\Rightarrow x^2+1=\dfrac{\left(t^2-1\right)^2}{4t^2}+1=\dfrac{\left(t^2-1\right)^2+4t^2}{4t^2}=\dfrac{\left(t^2+1\right)^2}{4t^2}\)
\(\Rightarrow\sqrt{x^2+1}=\left|\dfrac{t^2+1}{2t}\right|=\dfrac{t^2+1}{2t}\left(t\ge0\right)\)
~ ~ ~
\(B=\dfrac{2y\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\)
\(=\dfrac{2\times\dfrac{1}{t^2+1}\times\dfrac{t^2+1}{2t}}{\dfrac{t^2+1}{2t}-\dfrac{t^2-1}{2t}}\)
\(=\dfrac{\dfrac{1}{t}}{\dfrac{2}{2t}}=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :
\(\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\sqrt{1-x}^2+\sqrt{x}^2\right]\ge\left(\sqrt{\frac{2}{1-x}}.\sqrt{1-x}+\sqrt{\frac{1}{x}}.\sqrt{x}\right)^2\)
\(\Rightarrow\left(\frac{2}{1-x}+\frac{1}{x}\right)\left(1-x+x\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\Rightarrow A\ge3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(x=\sqrt{2}-1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky với $x>0; 1-x> 0$ ta có:
\(\left(\frac{2}{1-x}+\frac{1}{x}\right)[(1-x)+x]\geq (\sqrt{2}+1)^2\)
\(\Rightarrow \frac{2}{1-x}+\frac{1}{x}\geq \frac{(\sqrt{2}+1)^2}{1-x+x}=(\sqrt{2}+1)^2\)
Vậy \(y_{\min}=(\sqrt{2}+1)^2\)
Dấu bằng xảy ra khi \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\Rightarrow x=\sqrt{2}-1\)