Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
Công thức tính số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là\(\frac{n\left(n-1\right)}{2}\) (giao điểm)
Vậy số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là \(\frac{2006-\left(2006-1\right)}{2}=2011015\left(giaođiểm\right)\)
Bài 5:
Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; S10 = a1 + a2 + a3 + ... + a10
Xét 10 số S1, S2,...,S10 có hai trường hợp:
+ Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak , k từ 1 đến 10) => tổng của k số a1 , a2,...,ak \(⋮10\left(đpcm\right)\)
+ Nếu không có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => chắc chắn phải có ít nhất hai số nào đó có chữ số tận cùng giống nhau. Ta gọi hai số đó là Sm và Sn \(\left(1\le m< n\le10\right)\)
Sm = a1 + a2 + ... + a(m)
Sn = a1 + a2 + ... + a(m) + a(m+1)+ a(m+2) + ... + a(n)
=> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
=> Tổng của n - m số a(m+1), a(m+2),..., a(n) \(⋮\) 10 (đpcm)
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
2y+1 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
x | 30 | 10 | 6 | 2 | -30 | -10 | -6 | -2 |
y | 0 | 1 | 2 | 7 | -1 | -2 | -3 | -8 |
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Bài 1:
a) Xét p=2, vô lý
Xét p=3⇒\(p+10=13;p+14=17\), thỏa mãn
Xét \(p>3\Rightarrow\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)(k∈N*)
TH1: \(p=3k+1\)
\(\Rightarrow p+14=3k+1 +14=3k+15⋮3\) mà \(3k+15>3\) nên là hợp số, vô lý
TH2: \(p=3k+2\)
\(\Rightarrow p+10=3k+2+10=3k+12⋮3\) mà \(3k+12>3\) nên là hợp số, vô lý
Vậy nếu p>3 thì không có giá trị nào thỏa mãn đề bài.
Vậy p=3 thỏa mãn đề bài.
Bài 4:
Xét n=1, thỏa mãn
Xét n=2, vô lý
Xét n=3, thỏa mãn
Xét n=4, vô lý
Xét n>4\(\Rightarrow n!\)có tận cùng bằng 0
\(\Rightarrow1!+2!+3!+4!+...+n!=33+...+n!\) có tận cùng bằng 3 (1)
Mà \(1!+2!+3!+4!+...+n!\)là số chính phương nên không thể có tận cùng bằng 3 (2)
Từ (1) và (2)⇒Nếu n>4 thì không có giá trị nào thỏa mãn.
Vậy \(\left[{}\begin{matrix}n=1\\n=3\end{matrix}\right.\)thỏa mãn đề bài
Phương Anh à tớ linh trên lớp cậu nè
tớ trợ giúp câu b
nhóm 4 số vào sau đó lấy ssh chia 4 tìm ra số nhóm sau ddoss tính từng nhóm ra là -4 rồi nhân vói số nhóm là ra kết quả
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn