Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Câu 1:
A)
a) Để \(\frac{-5}{n-2}\)đạt giá trị nguyên thì \(-5⋮n-2\)
Vì \(-5⋮n-2\Rightarrow n-2\inƯ\left(-5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng giá trị:
n-2 | 1 | 5 | -1 | -5 |
n | 3 | 7 | 1 | -3 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(3;7;1;-3\right)\)
Đến câu b,c cậu cũng lí luận để chứng minh tử phải chia hết cho mẫu, còn tớ chỉ cần tách và đưa ra kết quả thôi nhé
b) Ta có: \(n-5⋮n+1\)
\(\Rightarrow\left(n+1\right)-6⋮n+1\)
\(\Rightarrow-6⋮n+1\)
Vì \(-6⋮n+1\Rightarrow n+1\inƯ\left(-6\right)=\left(\pm1;\pm2;\pm3;\pm6\right)\)
Ta có bảng giá trị:
n+1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
2 | 0 | 1 | 2 | 5 | -2 | -3 | -4 | 7 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow\left(0;1;2;5;-2;-3;-4;-7\right)\)
c) Ta có: \(3n+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+10⋮n-1\)
\(\Rightarrow10⋮n-1\)
Vì \(10⋮n-1\Rightarrow n-1\inƯ\left(10\right)=\left(1;-1;2;-2;5;-5;10;-10\right)\)
Ta có bảng giá trị:
n-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
2 | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(2;0;3;-1;6;-4;11;-9\right)\)
B)
a) Gọi d là ƯC (2n+1;2n+2) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\) \(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+1 và 2n+2 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{2n+2}\)là phân số tối giản
b) Gọi d là ƯC(2n+3;2n+5) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+5⋮d\end{cases}}\) \(\Rightarrow\left(2n+5\right)-\left(2n+3\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=\left(1;2\right)\)
Vì 2n+3 và 2n+5 không chia hết cho 2
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+5 và 2n+3 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+3}{2n+5}\)là phân số tối giản
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}