Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A\left(x\right)=P\left(x\right)+Q\left(x\right)=2x^2+3x-5+2x^2-7x+5\\ =\left(2x^2+2x^2\right)+\left(3x-7x\right)+\left(-5+5\right)\\ =4x^2-4x\\ B\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^2+3x-5-\left(2x^2-7x+5\right)\\ =2x^2+3x-5-2x^2+7x-5\\ =\left(2x^2-2x^2\right)+\left(3x+7x\right)+\left(-5-5\right)\\ =4x-10\)
b, \(A\left(x\right)=0\\ \Rightarrow4x^2-4x=0\\\Leftrightarrow 4x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của A(x) là 0 và 1
\(B\left(x\right)=0\\ 4x-10=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{5}{2}\)
Vậy nghiệm của B(x) là \(\dfrac{5}{2}\)
a, Ta có : G(x) = P(x) + Q(x)
= 2x3 - 2x2 + x - 1 + 2x3 - 2x2 + 13x + 5
= 4x3 - 4x2 + 14x + 4
b, Ta có : R(x) = P(x) - Q(x)
= ( 2x3 - 2x2 + x - 1 ) - ( 2x3 - 2x2 + 13x + 5 )
= 2x3 - 2x2 + x - 1 - 2x3 + 2x2 - 13x - 5
= - 12x - 6
c, Ta có : - 12x - 6 = 0
=> - 12x = 6
=> x= - 1/2
Vậy nghiệm của đa thức R(x) = -1/2
câu c, mk mk ko biết đúng hay không còn các câu còn lại đúng rồi
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625
a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b) Sửa Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)
hệ số cao nhất :9
hệ số tự do :- 14
c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)
\(M\left(x\right)=x^5+6x^4-x-14\)
d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)
\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)
\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)
a) Bậc P(x) = 4 + 3 + 1 = 8
Bậc của Q (x) = 2 + 3 + 1 = 6
b) P(x) + Q ( x) = x4 + x3 -2x + 1 + 2x2 -2x3 + x- 5
= x4 -x3 + 2x2 -x - 4
P(x) - Q (x) = x4 +x3 -2x + 1 - 2x2 -2x3 + x - 5
= x4 + 3x 3 -2x2 - 3x + 6
a) Bậc của đa thức P(x) là: 4+3+1=8
Bậc xủa đa thức Q(x) là: 2+3+1=6
b) P(x)+Q(x)=(x4+x3-2x+1)+(2x2-2x3+x-5)
P(x)+Q(x)=x4+x3-2x+1+2x2-2x3+x-5
P(x)+Q(x)=x4-x3+2x2-x-4
P(x)-Q(x)=(x4+x3-2x+1)-(2x2-2x3+x-5)
P(x)-Q(x)=x4+x3-2x+1-2x2+2x3-x+5
P(x)-Q(x)=x4+3x3-2x2-3x+6
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)
\(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)
\(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)
\(=3x^4+4x^3-2x+4\)
\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)
\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)
\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)
P(x) = x2 - 2x + 7x3 - 12
Q (x) = x3 - 2x2 + 5 - 5
=> P(x) = 7x3 + x2 - 2x - 12
=> Q (x) = x3 - 2x2
a) P(x) + Q(x) = 8x3 - x2 - 2x - 12
b) P(x) - Q(x) = 6x3 + 3x2 -2x - 12
c)
R(x) = -2x + 6 = 0
=> -2x = -6
=> x = -6 : (-2)
=> x = 3
Vậy x = 3 là nghiệm của đa thức R(x) = -2x + 6