K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

a, Ta có : G(x) = P(x) + Q(x)

                      = 2x3 - 2x2 + x - 1 + 2x3 - 2x2 + 13x + 5

                      = 4x3 - 4x2 + 14x + 4 

b, Ta có : R(x) = P(x) - Q(x) 

                      = ( 2x3 - 2x2 + x - 1 ) - ( 2x3 - 2x2 + 13x + 5 )

                      = 2x3 - 2x2 + x - 1 - 2x3 + 2x2 - 13x - 5

                      = - 12x - 6 

c, Ta có : - 12x - 6 = 0 

=> - 12x = 6

=> x= - 1/2

Vậy nghiệm của đa thức R(x) = -1/2 

câu c, mk mk ko biết đúng hay không còn các câu còn lại đúng rồi

30 tháng 3 2015

a)Bạn chỉ cần cộng 2 đa thức A(x) và B(x) lại với nhau thôi. Ra được P(x) thì tình nghiệm bình thường

B) Nhân 2 cho A(x), 3 cho B(x) rồi công lại là ra Q(x) 

\(P\left(x\right)=4x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=-x^4-5x^2-8x-\dfrac{3}{4}\)

a: \(R\left(x\right)=P\left(x\right)-Q\left(x\right)=3x^4+7x^2+\dfrac{5}{4}\)

b: \(R\left(x\right)=3x^4+7x^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)

nên R(X) không có nghiệm

20 tháng 4 2019

a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)

=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)

P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)

=\(2x^3-4x-x^2+6\)

vậy P(x)+Q(x)=\(-2x+3x^2-4\)

      P(x)-Q(x)=\(2x^3-4x-x^2+6\)

20 tháng 4 2019

a) \(P\left(x\right)=x^3-3x+x^2+1\)

              \(=x^3+x^2-3x+1\)

\(Q\left(x\right)=2x^2-x^3+x-5\)

              \(-x^3+2x^2+x-5\)

                            \(P\left(x\right)=x^3+x^2-3x+1\)

     +

                     \(Q\left(x\right)=-x^3+2x^2+x-5\)

                ___________________________________

  \(P\left(x\right)+Q\left(x\right)=\)          \(3x^2-2x-4\)

Vậy P(x) + Q(x) = 3x^2 - 2x - 4

                       \(P\left(x\right)=x^3+x^2-3x+1\)

     -        

                 \(Q\left(x\right)=-x^3+2x^2+x-5\)

     ____________________________________________

\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)

Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6

      

23 tháng 4 2019

a, P(x) + Q(x) = 1x2 -2x - 4 

   P(x) - Q(x) = 2x- 3x- 4x + 6

b, Tự lm nhé mk chưa nghĩ ra

#Hk_tốt

#Ngọc's_Ken'z

12 tháng 3 2019

a,P (x)+Q (x)+Q (x)=(3x-2x2-2+6x3)+(3x2-x-2x3+4)+(1+4x3-2x)

=3x-2x2-2+6x3+3x2-x-2x3+4+1+4x3-2x

=(3x-x-2x)+(-2x2+3x2+3x2)+(-2+4+1)+(6x3-2x3+4x3)

=4x2+3+8x3

b,P (x)-Q (x)-R (x)=(3x-2x2-2+6x3)-(3x2-x-2x3+4)-(1+4x3-2x)

=3x-2x2-2+6x3-3x2+x+2x3-4-1+4x3-2x

=(3x +x-2x)+(-2x2-3x2)+(-2-4-1)+(2x3+4x3)

=2x-5x2-7 +6x3

a) \(P\left(x\right)=4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

\(\Rightarrow P\left(x\right)=2x^2+3\)

\(Q\left(x\right)=3x^2-3x+2-x^3+2x-x^2\)

\(\Rightarrow Q\left(x\right)=-x^3+2x^2-x+2\)

b) \(P\left(x\right)-Q\left(x\right)-R\left(x\right)=0\Rightarrow P\left(x\right)-Q\left(x\right)=P\left(x\right)\)

\(R\left(x\right)=2x^2+3-\left(-x^3+2x^2-x+2\right)=2x^2+3+x^3-2x^2+x-2=x^3+x+1\)

c) Thay x = 2 vào đa thức Q ( x) ta được :

\(\left(-2\right)^3+2\left(2\right)^2-2+2=-8+2.4-2+2=-8+8-2+2=0\)

Vậy x = 2 là nghiệm của đa thức Q (x )

Thay x = 2 vào đa thức P(x) ta được:

\(2.2^2+3=2.4+3=8.3=16\)

Vậy x = 2 là nghiệm của đa thức P (x )

21 tháng 4 2019

a. P(x)+Q(x)=(x3-3x-x2+1)+(2x2-x3+x-5)

                  =( x3-x3) +(-x2+2x2)+(-3x+x)+(1-5)

                  =    x2-2x-4         

    P(x)-Q(x)=(x3-3x-x2+1)-(2x2-x3+x-5)

                   = x3_3x-x2+1-2x2+x3+x+5

                  = ( x3+x3) +(-x2_2x2)+(-3x-x)+(1+5)

                  =  2x3_3x2-4x+6

20 tháng 4 2019

\(b,P\left(x\right)+Q\left(x\right)=x^3-3x-x^2+1+2x^2-x^3+x-5=0\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

20 tháng 4 2019

Ví sao \(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\). Giải thích hộ mình với