K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

bài 2 còn thiếu vs còn bài 3 đaua bn

Bài 1:

1) Ta có: a<b

⇔a+5<b+5

2) Ta có: a<b

⇔a-7<b-7

3) Ta có: a<b

⇔6a<6b

4) Ta có: a<b

⇔3a<3b

hay 3a+1<3b+1

5) Ta có: a<b

⇔2a<2b

⇔-2a>-2b

hay -2a-5>-2b-5

Bài 2:

1) Ta có: a+5<b+5

⇔a<b

2) Ta có: -3a>-3b

⇔a>b

22 tháng 4 2017

a) Từ a + 5 < b + 5

=> a + 5 + (-5) < b + 5 + (-5) (cộng hai vế với -5)

=> a < b

Giải bài 13 trang 40 SGK Toán 8 Tập 2 | Giải toán lớp 8

8 tháng 4 2021

a)từ a+5<b+5 ta cộng -5 vào 2 vế được a<b

b)từ -3a>-3b ta nhân 2 vế với -1/3 (tức là chia cả 2 vế cho -3) và -3a . -1/3< -3b . -1/3 sẽ được a<b

24 tháng 4 2019

a) Ta có: a>b => 2a > 2b  (nhân 2 vế với 2)

                     => 2a - 3 > 2b - 3 (cộng 2 vế với -3)

b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)

                                       => a > b (nhân 2 vế với -1/4)

c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)

                                  => -4a < 5c-1

Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)

12 tháng 4 2022

ko có biết

8 tháng 2 2022

jjjjjjjjjjjjjjjj

22 tháng 4 2017


a) Từ a < b => 2a < 2b (nhân hai vế với 2 > 0)

=> 2a + 1 < 2b + 1 (*) (cộng hai vế với 1)

b) Ta có 2b + 1 < 2b + 3 với mọi số thực b.

Kết hợp với (*) ta suy ra:

2a + 1 < 2b + 3 (tính chất bắc cầu)

10 tháng 4 2019

a) vì a≤ b

Nhân cả 2 vế của BĐT với -2

=> -2a≥ -2b

Cộng cả 2 vế của BĐT với 3

=> -2a+3 ≥ -2b+3

b) vì a>b

Nhân cả 2 vế với 2

=> 2a>2b

Cộng cả 2 vế với (-5)

=> 2a -5> 2b-5

c) vì a>b

Nhân cả 2 vế với 5

=> 5a>5b (1)

Vì 0> -1

Cộng cả 2 vế với 5b

=> 5b> 5b -1 (2)

Từ (1) và (2) => 5a> 5b-1

11 tháng 4 2019

a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3

b/ a > b => 2a > 2b => 2a-5 > 2b-5

c/ a > b => 5a > 5b

0 > -1

=> 5a + 0 > 5b + (-1)

<=> 5a > 5b -1

a) Ta có a>b

\(\Leftrightarrow2a>2b\)(nhân hai vế của bất đẳng thức cho 2)

\(\Leftrightarrow2a+3>2b+3\)(cộng hai vế của bất đẳng thức cho 3)

mà 2b+3>2b+1

nên 2a+3>2b+1

b) Ta có: a>b

\(\Leftrightarrow-2a< -2b\)(nhân hai vế của bất đẳng thức cho -2 và đổi chiều)

\(\Leftrightarrow-2a+\left(-6\right)< -2b+\left(-6\right)\)(cộng hai vế của bất đẳng thức cho -6)

\(\Leftrightarrow-2a-6< -2b-6\)

mà -2b-6<2b

nên -2a-6<-2b