K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Đang rảnh, buồn ngủ nên giải cho tỉnh táo :D

Ta nhận thấy x=0 không phải là nghiệm của phương trình, vậy ta chia cả 2 vế của phương trình cho x2 khác 0, ta được:

\(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\dfrac{1}{x}\right)+5\left(x+\dfrac{1}{x}\right)-38=0\)

Đặt \(x+\dfrac{1}{x}=y\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

Ta được: \(6\left(y^2-2\right)+5y-38=0\)

Do đó: y1=2,5;y2=-10/3

Với y=2,5\(\Rightarrow x+\dfrac{1}{x}=2,5\Rightarrow x_1=2;x_2=0,5\)

Với y=-10/3

\(\Rightarrow x+\dfrac{1}{x}=-\dfrac{10}{3}\Rightarrow x_3=-\dfrac{1}{3};x_4=-3\)

Vậy: \(S=\left\{2;0,5;-\dfrac{1}{3};-3\right\}\)

13 tháng 7 2017

Bài a tự giải

Bài b thì biến đổi xong rồi đặt ẩn phụ \(y=x+\dfrac{1}{x}\)

Bài c:

Đặt x-1=y

Phương trình trở thành: \(\left(y+2\right)^4+\left(y-2\right)^4=82\)

Rút gọn ta được: \(2y^4+48y^2-50=0\)

Đặt y2=z ( \(z\ge0\) )

Phương trình này cho z1=1, z2=-25(Loại)

\(z=1\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow x_1=2;x_2=0\)

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

26 tháng 8 2018

a) \(\left(x-4\right)^4+\left(x-2\right)^4=82\)

Đặt \(x-3=a\), ta có:

\(\left(a-1\right)^4+\left(a+1\right)^4=82\)

\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)

\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)

\(\Rightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+1\right)+4a^2=82\)

\(\Rightarrow2\left[\left(a^2+1\right)^2+4a^2\right]=82\)

\(\Rightarrow\left(a^2+1\right)^2+4a^2=41\)

\(\Rightarrow a^4+2a^2+1+4a^2=41\)

\(\Rightarrow a^4+6a^2+1=41\)

\(\Rightarrow a^4+6a^2-40=0\)

\(\Rightarrow a^4-4a^2+10a^2-40=0\)

\(\Rightarrow a^2\left(a^2-4\right)+10\left(a^2-4\right)=0\)

\(\Rightarrow\left(a^2-4\right)\left(a^2+10\right)=0\)

\(\Rightarrow\left(a-2\right)\left(a+2\right)\left(a^2+10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-2=0\\a+2=0\\a^2+10=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\\a^2=-10\end{matrix}\right.\)

Vì a2 = -10 ( Không tồn tại )

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b)Sửa đề

\(6x^4+5x^3-38x^2+5x+6=0\)

Xét x = 0 không phải là nghiệm của phương trình

Xét \(x\ne0\), chia cả hai vế cho x2, ta được

\(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}=0\)

\(\Rightarrow6\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-38=0\)

Đặt \(x+\dfrac{1}{x}=a\left(1\right)\)

\(\Rightarrow\left(x+\dfrac{1}{x}\right)^2=a^2\)

\(\Rightarrow x^2+\dfrac{1}{x^2}+2=a^2\)

\(\Rightarrow x^2+\dfrac{1}{x^2}=a^2-2\left(2\right)\)

Thay (1) và (2) vào phương trình

\(6\left(a^2-2\right)+5a-38=0\)

\(\Rightarrow6a^2-12+5a-38=0\)

\(\Rightarrow6a^2+5a-50=0\)

\(\Rightarrow6a^2-15a+20a-50=0\)

\(\Rightarrow3a\left(2a-5\right)+10\left(2a-5\right)=0\)

\(\Rightarrow\left(2a-5\right)\left(3a+10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2a-5=0\\3a+10=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2a=5\\3a=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=\dfrac{5}{2}\\a=-\dfrac{10}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5}{2}\\x+\dfrac{1}{x}=-\dfrac{10}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\\x=-3\end{matrix}\right.\)

25 tháng 2 2018

@Lightning Farron

25 tháng 2 2018

@soyeon_Tiểubàng giải

25 tháng 6 2019

a) 2x(x-3)+5(x-3)=0

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!